Skip to main content

Regulation of Viral and Cellular Gene Expression by E1A Proteins Encoded by the Oncogenic Adenovirus Type 12

  • Chapter
The Molecular Repertoire of Adenoviruses III

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/3))

Abstract

For more than 15 years human adenoviruses (Ad) have been a powerful tool for studying cellular processes such as regulation of gene expression, alternative splicing, polyadenylation, and replication. Especially the analysis of viral proteins encoded by early region 1A (E1A), which was shown to regulate transcription, has given many insights into how DNA viruses regulate their own and cellular gene expression. Moreover, E1A proteins have been the subject of extensive studies because of their ability to act as oncoproteins that cooperate with the adenovirus E1B gene products to transform rodent cells in culture and, in case of the oncogenic adenoviruses (e.g., Ad12), to induce tumors in animals (Gallimore et al. 1974; Graham et al. 1974a, b; Houweling 1980; Jochemsen et al. 1982). The ability to promote oncogenic transformation and transcriptional regulation appear to be distinct activities of the E1A polypeptides (for review see Moran and Mathews 1987). In oncogenic transformation, protein functions of region E1A are necessary to immortalize primary cells, whereas functions of region E1B are essential to obtain a fully transformed phenotype. The functions of region E1B can be substituted by specific cellular gene products, e.g., activated Ha-ras (Byrd et al. 1988; Ruley 1983). The reasons for the difference in oncogenicity of variant adenovirus serotypes are not yet understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abate C, Curran T (1990) Encounters with Fos and Jun on the road to AP-1. Semin Cancer Biol 1: 19–26

    PubMed  CAS  Google Scholar 

  • Abraham SE, Lobo S, Yaciuk P, Wang H-GH, Moran E (1993) p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8: 1639–1647

    PubMed  CAS  Google Scholar 

  • Ackrill AM, Blair GE (1988) Regulation of major histocompatibility class I gene expression at the level of transcription in highly oncogenic adenovirus-transformed rat cells. Oncogene 3: 483–487

    PubMed  CAS  Google Scholar 

  • Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072: 129–157

    PubMed  CAS  Google Scholar 

  • Angel P, Imagawa M, Chiù R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M (1987) Phorbol ester-inducible genes contain a common eis element recognized by a TPA-modulated transacting factor. Cell 49: 729–739

    Article  PubMed  CAS  Google Scholar 

  • Angel P, Hattori K, Smeal T, Karin M (1988) The Jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55: 875–885

    Article  PubMed  CAS  Google Scholar 

  • Bagchi S, Raychaudhuri P, Nevins JR (1990) Adenovirus E1A proteins can dissociate heteromeric cellular complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62: 659–669

    Article  PubMed  CAS  Google Scholar 

  • Baldwin AS, Sharp PA (1987) Binding of a nuclear factor to a regulatory sequence in the promoter of the mouse H-2Kb class I major histocompatibility gene. Mol Cell Biol 7: 305–313

    PubMed  CAS  Google Scholar 

  • Bandara LR, La Thangue NB (1991) Adenovirus E1A prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–497

    Article  PubMed  CAS  Google Scholar 

  • Barbeau D, Charbonneau R, Whalen SG, Bayley ST (1994) Functional interactions within adenovirus E1A protein complexes. Oncogne 9: 359–273

    CAS  Google Scholar 

  • Benbrook DM, Jones NC (1990) Heterodimer formation between CREB and Jun proteins. Oncogene 5: 295–302

    PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1978) Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Schrier PI, Houweling A, Bos JL, Van der Eb AJ, Zijlstra M, Melief CJM (1983) Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 305: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Blake MC, Azizkhan JC (1989) Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo. Mol Cell Biol 9: 4994–5002

    PubMed  CAS  Google Scholar 

  • Borrelli E, Hen R, Chambon P (1984) Adenovirus 2 E1A products repress enhancer-induced stimulation of transcription. Nature 312: 608–612

    Article  PubMed  CAS  Google Scholar 

  • Brenner DA, O’Hara M, Angel P, Chojkier M, Karin M (1989) Prolonged activation of jun and collagenase genes by tumour necrosis factor-α. Nature 337: 661–663

    Article  PubMed  CAS  Google Scholar 

  • Brockmann D, Tries B, Esche H (1990) Isolation and characterization of novel adenovirus type 12 E1A mRNAs by cDNA PCR technique. Virology 179: 585–590

    Article  PubMed  CAS  Google Scholar 

  • Brockmann D, Feng L, Kröner G, Tries B, Esche H (1994) Adenovirus type 12 early region 1A express a 52R protein repressing the trans-activating activity of transcription factor c-Jun/AP-1. Virology 198: 717–723

    Article  PubMed  CAS  Google Scholar 

  • Buckbinder L, Miralies BJ, Reingerg D (1989)TPAcan overcome the requirement for E1A and other act synergistically in stimulating expression of adenovirus EIN promoter. EMBO J 8: 4239–4250

    PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Guarente L, Sharp PA (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Byrd PJ, Grand RJ, Gallimore PH (1988) Differential transformation of primary human embryo retinal cells by adenovirus E1 regions and combinations of E1A + ras. Oncogene 2: 477–484

    PubMed  CAS  Google Scholar 

  • Cao L, Faha B, Dembski M, Tsai LH, Harlow E, Dyson N (1992) Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F. Nature 355: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Chodosh LA, Sharp PA (1985) An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43: 439–448

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Chodosh LA, Sharp PA (1987) The major late transcription factor binds to and activates the mouse metallothionein I promoter. Gene Dev 1: 973–980

    Article  PubMed  CAS  Google Scholar 

  • Chang LS, Shi Y, Shenk T (1989) Adeno-associated virus P5 promoter contains an adenovirus-inducible element and a binding site for the major late transcription factor. J Virol 63: 3479–3488

    PubMed  CAS  Google Scholar 

  • Chatton B, Bocco JL, Gaire M, Hauss C, Reimund B, Goetz J, Kedinger C (1993) Transcriptional activation by the larger E1A product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1A. Mol Cell Biol 13: 561–570

    PubMed  CAS  Google Scholar 

  • Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the Rb protein. Cell 65: 1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR (1992) Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 89: 1053–1061

    Article  Google Scholar 

  • Chiu R, Angel P, Karin M (1989) Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell 59: 979–986

    Article  PubMed  CAS  Google Scholar 

  • Chodosh LA, Carthew RW, Morgan JG, Crabtree GR, Sharp PA (1987) The adenovirus major late transcription factor activates the rat gamma-fibrinogen promoter. Science 238: 684–688

    Article  PubMed  CAS  Google Scholar 

  • Chow LT, Brooker TR, Lewis JB (1979) Complex splicing pattern of RNAs from early regions of adenovirus-2. J Mol Biol 124: 265–303

    Article  Google Scholar 

  • Cohen DR, Curran T (1988) fra-1: a serum inducible, cellular immediate early gene that encodes for a fosrelated antigen. Mol Cell Biol 8: 2063–2069

    PubMed  CAS  Google Scholar 

  • Cortes P, Buckbinder L, Leza MA, Rak N, Hearing P, Merino A, Reinberg D (1988) EivF, a factor required for transcription of the adenovirus EIV promoter, binds to an element, involved in E1A-dependent activation and cAMP induction. Gene Dev 2: 975–990

    Article  PubMed  CAS  Google Scholar 

  • Curran T, Franza BR Jr (1988) Fos and Jun: the AP-1 connection. Cell 55: 395–397

    Article  PubMed  CAS  Google Scholar 

  • Curran T, MacConnel WP, Van Straaten F, Verma IM (1983) Structure of the FBJ murine osteosarcoma virus genome: molecular cloning of its associated helper virus and the cellular homolog of the v-fos gene from mouse and human cells. Mol Cell Biol 3: 914–921

    PubMed  CAS  Google Scholar 

  • Dalton S (1992) Cell cycle regulation of the human cdc2 gene. EMBO J 11: 1797–1804

    PubMed  CAS  Google Scholar 

  • De Groot RP, Kruyt FAE, Van der Saag PT, Kruijer W (1990) Ectopic expression of c-jun leads to differentiation of P19 embryonal cells. EMBO J 9: 1831–1837

    PubMed  Google Scholar 

  • De Groot RP, Foulkes N, Mulder M, Kruijer W, Sassone-Corsi P (1991a) Positive regulation of jun/AP-1 by E1A. Mol Cell Biol 11: 192–201

    PubMed  Google Scholar 

  • De Groot RP, Meijer I, Van den Brink S, Mummery C, Kruijer W (1991b) Differential regulation of JunB and JunD by adenovirus type 5 and 12 E1A proteins. Oncogene 6: 2357–2361

    PubMed  Google Scholar 

  • Devoto SH, Mudryj M, Pines J, Hunter T, Nevins JR (1992) A cyclin A-cdc2 kinase complex possesses sequence-specific DNA binding activity: p33 cdk2 is a component of the E2F-cyclin A complex. Cell 68: 167–176

    Article  PubMed  CAS  Google Scholar 

  • Dumont DJ, Tremblay ML, Branton PE (1989) Phosphorylation at serine 89 induces a shift in gel mobility but has little effect on the function of adenovirus type 5 E1A proteins. J Virol 63: 987–991

    PubMed  CAS  Google Scholar 

  • Dyson N, Bernards R, Friend SH, Gooding LR, Hasseil JA, Major EO, Pipas JM, Vandyke T, Harlow E (1990) Large T antigen of many polyomaviruses are able to form complexes with the retinoblastoma protein. J Virol 64: 1353–1356

    PubMed  CAS  Google Scholar 

  • Dyson N, Guida P, McCall C, Harlow E (1992) Adenovirus E1A makes two distinct contacts with the retinoblastoma protein. J Virol 66: 4606–4611

    PubMed  CAS  Google Scholar 

  • Egan C, Jelsma TN, Howe JA, Bayley ST, Ferguson B, Branton PE (1988) Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol Cell Biol 8: 3955–3959

    PubMed  CAS  Google Scholar 

  • Egan C, Bayley ST, Branton PE (1989) Binding of the RBI protein to E1A products is required for adenovirus transformation. Oncogene 4: 383–388

    PubMed  CAS  Google Scholar 

  • Engel DA, Müller U, Gedrich RW, Eubanks JS, Shenk T (1991) Induction of c-fos mRNA and AP-1 DNA-binding activity by cAMP in cooperation with either the adenovirus 243- or the adenovirus 289-amino acid E1A protein. Proc Natl Acad Sci USA 88: 3957–3961

    Article  PubMed  CAS  Google Scholar 

  • Enkemann SA, Konieczny SF, Taparowsky EJ (1990) Adenovirus 5 E1A represses muscle-specific enhancers and inhibits expression of myogenic regulatory factor genes, MyoDI and myogenin. Cell Growth Differ 1: 375–382

    PubMed  CAS  Google Scholar 

  • Ewen ME, Xing Y, Bentley-Lawrence J, Livingston DM (1991) Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Ewen ME, Faha B, Harlow E, Livingston DM (1992) Interaction of p107 with cyclin A independent of complex formation with viral oncoproteins. Science 255: 85–87

    Article  PubMed  CAS  Google Scholar 

  • Faha B, Ewen ME, Tsai LH, Livingston DM, Harlow E (1992) Interaction between human cyclin A and adenovirus E1A-associated p107 protein. Science 255: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Fanning E, Doerfler W (1976) Intracellular forms of adenovirus DNA. V. Viral DNA sequences in hamster cells abortively infected and transformed with human adenovirus type 12. J Virol 20: 373–383

    PubMed  CAS  Google Scholar 

  • Ferguson B, Krippl B, Andrisani O, Jones N, Westphal H, Rosenberg M (1985) E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol Cell Biol 5: 2653–2661

    PubMed  CAS  Google Scholar 

  • Flint SJ, Jones N (1991) Differential regulation of three members of the ATF/CREB family of DNA-binding proteins. Oncogene 6: 2019–2026

    PubMed  CAS  Google Scholar 

  • Flint SJ, Leong K (1986) Enhanced transcription activity of HeLa cell extracts infected with adenovirus type 2. Cancer Cells 4: 137–146

    CAS  Google Scholar 

  • Flint SJ, Shenk T (1989) Adenovirus E1A protein paradigm viral transactivator. Annu Rev Genet 23: 141–161

    Article  PubMed  CAS  Google Scholar 

  • Friedman DJ, Ricciardi RP (1988) Adenovirus type 12 E1A gene represses accumulation of MHC class I mRNA at the level of transcription. Virology 165: 303–305

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Sharp PA, Sambrook J (1974) Viral DNA in transformed cells. II. A Study of the sequence of adenovirus 2 DNA in nine cell lines of transformed rat cells using specific fragments of the viral genome. J Mol Biol 89: 49–72

    Article  PubMed  CAS  Google Scholar 

  • Garbisa S, Pozzatti R, Muschel RJ, Saffiotti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA (1987) Secretion of type IV collagenolytic protease and metastatic phenotype by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1A. Cancer Res 47: 1523–1528

    PubMed  CAS  Google Scholar 

  • Gedrich RW, Bayley S, Engel DA (1992) Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R E1A protein and cyclic AMP requires domains necessary for transformation. J Virol 66: 5849–5659

    PubMed  CAS  Google Scholar 

  • Giordana A, Whyte P, Harlow E, Franza BR, Beach D, Draetta G (1989) A 60 kd cdc2-associated polypeptide complexes with E1A proteins in adenovirus-infected cells. Cell 58: 981–990

    Article  Google Scholar 

  • Giordano A, McCall C, Whyte P, Franza BR (1991) Human cyclin A and the retinoblastoma protein interact with similar but distinguishable sequences in the adenovirus E1A gene product. Oncogene 6:481–485

    PubMed  CAS  Google Scholar 

  • Girling R, Patridge JF, Bandara LR, Burden N, Totty NF, Hsuan JJ, La Thangue NB (1993) A new component of the transcription factor DRTF1/E2F. Nature 362: 83–87

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, Abrahams PJ, Mulder C, Heijneker SO, Warnaar SO, De Vries FAJ, Fiers W, Van der Eb AJ (1974a) Studies on in vitro transformation by DNA and DNA fragments of human adenoviruses and simian virus 40. Cold Spring Harbor Symp Quant Biol 39: 637–650

    Google Scholar 

  • Graham FL, Van der Eb AJ, Heijneker HL (1974b) Size and location of the transforming region in human adenovirus type 5 DNA. Nature 251: 687–691

    Article  PubMed  CAS  Google Scholar 

  • Grand RJ, Byrd PJ, Grabham PW, Gregory CD, Huen DS, Merrick RM, Young LS, Gallimore PH (1989) The expression of the retinoblastoma gene product Rb1 in primary and adenovirus-transformed human cells. Oncogen 4: 1291–1298

    CAS  Google Scholar 

  • Green M, Loewenstein PM, Pusztai R, Symington JS (1988) An adenovirus E1A protein domain activates transcription in vivo and in vitro in the absence of protein synthesis. Cell 53: 921–926

    Article  PubMed  CAS  Google Scholar 

  • Hagmeyer BM, König H, Herr I, Offringa R, Zantema A, Van der Eb AJ, Herrlich P, Angel P (1993) Adenovirus E1A negatively and positively modulates transcription of AP-1 dependent genes by dimer-specific regulation of the DNA binding and transactivation activities of Jun. EMBO J 12: 3559–3572

    PubMed  CAS  Google Scholar 

  • Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88: 3720–3724

    Article  PubMed  CAS  Google Scholar 

  • Hai T, Lui F, Allegretto EA, Karin M, Green MR (1988) A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Gene Dev 2: 1216–1226

    Article  PubMed  CAS  Google Scholar 

  • Hai T, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Gene Dev 3: 2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Haley KP, Overhauser G, Babiss LE, Ginsberg HS, Jones NC (1984) Transformation properties of type 5 adenovirus mutants that differentially express the E1A products. Proc Natl Acad Sci USA 81: 5734–5738

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Gleason SL, Levi B-Z, Hirschfeld S, Appella E, Ozato K (1989) H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histo-compatibility class I genes and the estrogen response element. Proc Natl Acad Sci USA 86: 8289–8293

    Article  PubMed  CAS  Google Scholar 

  • Hamel PA, Gill RM, Phillips RA, Gallie BL (1992) Transcriptional repression of the E2-containing promoters EIIaE, c-myc, and RB1 by the product of the RB1 gene. Mol Cell Biol 12: 3431–3438

    PubMed  CAS  Google Scholar 

  • Harlow E, Whyte P, Franza BR, Schley C(1986) Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6: 1579–1569

    PubMed  CAS  Google Scholar 

  • Hen R, Sassone-Corsi P, Corden P, Glaub MP, Chambon P (1982) Sequences upstream from the TATA box are required in vivo and in vitro for efficient transcription from the adenovirus serotype 2 major late promoter. Proc Natl Acad Sci USA 79:7132–7136

    Article  PubMed  CAS  Google Scholar 

  • Hen R, Borrelli E, Chambon P (1985) Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science 230: 1391–1394

    Article  PubMed  CAS  Google Scholar 

  • Herrmann CH, Su LK, Harlow E (1991) Adenovirus E1A is associated with a serine/threonine protein kinase. J Virol 65: 5848–5859

    PubMed  CAS  Google Scholar 

  • Heysen A, Verwaerde P, D’Halluin JC (1991) Nucleotide sequence and regulation of the adenovirus type 3 E2A early promoter. Virology 181: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SW, Lipp M, Nevins JR (1989) E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc Natl Acad Sci USA 86: 3594–3598

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR (1992) The interaction of Rb with E2F coincides with an inhibition of the transcriptional activity of E2F. Gene Dev 6: 177–185

    Article  PubMed  CAS  Google Scholar 

  • Hipskind RA, Nordheim A (1991) Functional dissection in vitro of the human c-fos promoter. J Biol Chem 226:19583–19592

    Google Scholar 

  • Hoeffler WK, Kovelman R, Roeder RG (1988) Activation of transcription factor IIIC by the adenovirus E1A protein. Cell 53: 907–920

    Article  PubMed  CAS  Google Scholar 

  • Houweling A, Van den Elsen PJ, Van der Eb AJ (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–550

    Article  PubMed  CAS  Google Scholar 

  • Howe, JA, Bayley ST (1992) Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A. Virology 186: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Howe JA, Mymryk JS, Egan C, Branton PE, Baley ST (1990) Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc Natl Acad Sci USA 87: 5883–5887

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Lees J, Buchkovich K, Harlow E (1992) The retinoblastoma protein physically associates with the human cdc2 kinase. Mol Cell Biol 12: 971–980

    PubMed  CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Lane WT (1962) Oncogenic effects in hamsters of human adenovirus types 12 and 18. Proc Natl Acad Sci USA 48: 2051–2058

    Article  PubMed  CAS  Google Scholar 

  • Hurst HC, Jones NC (1987) The identification of factors that interact with the E1 A-inducible adenovirus E3 promoter. Gene Dev 1: 1132–1146

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M-A, Nevins JR (1993) Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol Cell. Biol 13: 7029–7035

    CAS  Google Scholar 

  • Ivashkiv LB, Liou H-C, Kara CJ, Lamph WW, Verma IM, Glimcher LH (1990) mXBP/CRE-BP2 and c-Jun form a complex which binds to the cyclic AMP, but not to the 12–0-tetradecanoylphorbol-13-acetate, response element. Mol Cell Biol 10: 1609–1621

    PubMed  CAS  Google Scholar 

  • Jelsma TN, Howe JS, Mymryk JS, Evelegh CM, Cunniff NFA, Bayley ST (1989) Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 170: 120–130

    Article  Google Scholar 

  • Jochemsen H, Daniels GSG, Hertoghs JJL, Schrier PI, Van Elsen PJ, Van der Eb AJ (1982) Identification of adenovirus-type 12 gene products involved in transformation and oncogenesis. Virology 122: 15–28

    Article  PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979) An adenovirus type 5 early gene function regulates expression of other early genes. Proc Natl Acad Sci USA 76: 3665–3669

    Article  PubMed  CAS  Google Scholar 

  • Karin M (1991) The AP-I complex and its role in transcriptional control by protein kinase C. In: Cohen P, Foulkes JG (eds) The hormonal control regulation of gene transcription. Elsevier Science, Amsterdam, pp 235–252

    Google Scholar 

  • Kimelmann D, Miller JS, Porter D, Roberts BE (1985) E1A regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J Virol 53: 399–409

    Google Scholar 

  • Kimura A, Israel A, Le Bail O, Kourilsky P (1986) Detailed analysis of the mouse H-2Kb promoter: enhancer-like sequences and their role in the regulation of class I gene expression. Cell 44:261–272

    Article  PubMed  CAS  Google Scholar 

  • Kitabayashi I, Chiu R, Gachelin G, Yokoyama K(1991) ElAdependentup-regulationof c-jun/AP-1 activity. Nucleic Acids Res 19: 649–655

    Article  PubMed  CAS  Google Scholar 

  • Kitchingman GR, Westphal H (1980) The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. J Mol Biol 137:23–48

    Article  PubMed  CAS  Google Scholar 

  • Kleinberger T, Shenk T (1991) A protein kinase is present in a complex with adenovirus E1a proteins. Proc Natl Acad Sci USA 88: 11143–11147

    Article  PubMed  CAS  Google Scholar 

  • Koveshdi I, Reichel R, Nevins JR (1986) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45: 219–228

    Article  Google Scholar 

  • Koveshdi I, Reichel R, Nevins JR (1987) Role of an adenovirus E2 promoter binding factor in EIA-mediated coordinate gene control. Proc Natl Acad Sci USA 84: 2180–2184

    Article  Google Scholar 

  • Kripple B, Ferguson B, Jones N, Rosenberg M, Westphal H (1985) Mapping of functional domains in adenovirus E1A proteins. Proc Natl Acad Sci USA 82: 7480–7484

    Article  Google Scholar 

  • Kripple B, Andrisani O, Jones N, Westphal H, Rosenberg M, Ferguson B (1986) Adenovirus type 12 E1A protein expressed in Escherichia coli is functional upon transfer by microinjection or protoplast fusion into mammalian cells. J Virol 59: 420–427

    Google Scholar 

  • La Thangue NB, Johnston LH (1993) Transcriptional complexity. Curr Biol 8: 554–557

    Article  Google Scholar 

  • Lee KA, Hai TY, SivaRaman L, Thimmappaya B, Hurst HC, Jones NC, Green MR (1987) A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc Natl Acad Sci USA 84: 8355–8359

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Kao CC, Bryant GO, Liu X, Berk AJ (1991) Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Lees E, Faha B, Dulie V, Reed SI, Harlow E (1992) Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with p107 and E2F in a temporally distinct manner. Gene Dev 6: 1874–1885

    Article  PubMed  CAS  Google Scholar 

  • Leff T, Corden J, Elkaim R, Sassone-Corsi P (1985) Transcriptional analysis of the adenovirus-5 EIII promoter: absence of sequence specificity for stimulation by E1A gene products. Nucleic Acids Res 13:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Leong K, Berk AJ (1986) Adenovirus early region 1A protein increases the number of template molecules transcribed in cell-free extracts. Proc Natl Acad Sci USA 83: 5844–5852

    Article  PubMed  CAS  Google Scholar 

  • Leong K, Brunet L, Berk AJ (1988) Factors responsible for the higher transcriptional activity of extracts of adenovirus infected cells fractionate with the TATA box transcription factor. Mol Cell Biol 8:1765–1774

    PubMed  CAS  Google Scholar 

  • Lewis JB, Mathews MB (1980) Control of adenovirus early gene expression: a class of immediate early products. Cell 21: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Lewis ED, Manley JL (1985) Control of adenovirus late promoter expression in two human cell lines. Mol Cell Biol 5: 2433–2442

    PubMed  CAS  Google Scholar 

  • Lillie JW, Green MR (1989) Transcription activation by the adenovirus E1A protein. Nature 338: 39–44

    Article  PubMed  CAS  Google Scholar 

  • Lillie JW, Green M, Green MR (1986) An adenovirus E1A protein region required for transformation and transcriptional repression. Cell 46: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Lillie JW, Loewenstein PM, Green MR, Green M (1987) Functional domains of adenovirus type 5 E1A proteins. Cell 50: 1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Green MR (1990) A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1A protein. Cell 61: 1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein PM, Green M (1989) In vitro trans-activation by chemically synthesized adenovirus conserved region 3 peptides: reaction properties and mutational analysis. J Biol Chem 264: 21504–21508

    PubMed  CAS  Google Scholar 

  • Lucher LA, Kimelman D, Symington JS, Brackmann KH, Cartas MA, Thornton H, Green M (1984) Identification of adenovirus 12-encoded E1A tumor antigens synthesized in infected and transformed mammalian cells and in Escherichia coli. J Virol 52: 136–144

    PubMed  CAS  Google Scholar 

  • Lucher LA, Loewenstein PM, Green M (1985) Phosphorylation in vitro of Escherichia coli-produced 235R and 266R tumor antigens encoded by human adenovirus type 12 early transformation region E1A. J Virol 56: 183–193

    PubMed  CAS  Google Scholar 

  • Lucher LA, Brackmann KH, Symington JS, Green M (1986) Posttranslational modification at the N terminus of the human adenovirus type 12 E1A 235R tumor antigen. J Virol 58: 592–599

    PubMed  CAS  Google Scholar 

  • Marton MJ, Bairn SB, Ornelles DA, Shenk T (1990) The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1A-independent accumulation of E2 mRNA. J Virol 64: 2345–2359

    PubMed  CAS  Google Scholar 

  • Matsui M, Tokuhara M, Konuma Y, Nomura N, Ishizaki R (1990) Isolation of human fos-related genes and their expression during monocyte macrophage differentiation. Oncogene 5: 249–255

    PubMed  CAS  Google Scholar 

  • McAllister RM, Macpherson I (1968) Transformation of a hamster cell line by adenovirus type 12. J Gen Virol 2: 99–106

    Article  PubMed  CAS  Google Scholar 

  • McBride WD, Wiener A (1964) In vitro transformation of hamster kidney cells by human adenovirus type 12. Proc Soc Exp Biol Med 115: 870–874

    PubMed  CAS  Google Scholar 

  • Meijer I, Jochemsen AG, De Wit CM, Bos JL, Morello D, Van der Eb AJ (1989) Adenovirus type 12 E1A down regulates expression of a transgene under control of a major histocompatibility complex class I promoter: evidence for transcriptional control. J Virol 63: 4039–4042

    PubMed  CAS  Google Scholar 

  • Meijer I, Van Dam H, Boot AJM, Bos JL, Zantema A, Van der Eb AJ (1991) Co-regulated expression of junB and MHC class I genes in adenovirus-transformed cells. Oncogene 6: 911–916

    PubMed  CAS  Google Scholar 

  • Meijer I, Boot AJM, Mahabir G, Zantema A, Van der Eb AJ (1992) Reduced binding activity of transcription factor NF-kB accounts for MHC class I repression in adenovirus type 12 E1-transformed cells. Cell Immunol 145: 56–65

    Article  PubMed  CAS  Google Scholar 

  • Merino A, Buckbinder L, Mermelstein FH, Reinberg DH (1989) Phosphorylation of cellular proteins regulates their binding to the cAMP response element. J Biol Chem 264: 21266–21276

    PubMed  CAS  Google Scholar 

  • Miyamoto NG, Moncolin V, Egly JM, Chambon P (1985) Specific interaction between a transcription factor and the upstream element of the adenovirus 2 major late promoter. EMBO J 4: 3563–3570

    PubMed  CAS  Google Scholar 

  • Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic AMP response element of the somatostatin gene. Nature 328: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Moran E, Mathews MB (1987) Multiple functional domains in the adenovirus E1A gene. Cell 48: 177–178

    Article  PubMed  CAS  Google Scholar 

  • Moran E, Zerler B (1988) Interactions between cell growth-regulating domains in the products of the adenovirus E1A oncogene. Mol Cell Biol 8: 1756–1764

    PubMed  CAS  Google Scholar 

  • Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B (1986) Lytic and transforming functions of individual products of the adenovirus E1A gene. J Virol 57: 765–775

    PubMed  CAS  Google Scholar 

  • Morgan JI, CurranT (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: 421–451

    Article  PubMed  CAS  Google Scholar 

  • Mudryj M, Hiebert SW, Nevins JR (1990) A role for the adenovirus inducible E2F transcription factor in a proliferation-dependent signal transduction pathway. EMBO J 7: 2179–2184

    Google Scholar 

  • Mudryj M, Devoto SH, Hiebert SW, Hunter T, Pines J, Nevins JR (1991) Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65: 1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Müller U, Roberts MP, Engel AD, Doerfler W, Shenk T (1989) Induction of transcription factor AP-1 by adenovirus E1A protein and cAMP. Gene Dev 3: 1991–2002

    Article  PubMed  Google Scholar 

  • Mukai N, Kobayashi S (1972) Undifferentiated intraperitoneal tumors induced by human adenovirus type 12 in hamsters. Am J Pathol 69: 331–348

    PubMed  CAS  Google Scholar 

  • Muki N, Murao T (1975) Retinal tumor induction by ocular inoculation of human adenovirus in 3 day old rats. J Neuropathol Exp Neurol 34: 28–35

    Article  Google Scholar 

  • Nakajima H, Horikoshi M, Roeder RG (1988) Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specifity, and TATA box-promoter interactions of TFIID. Mol Cell Biol 8: 4028–4040

    PubMed  CAS  Google Scholar 

  • Neill SD, Nevins JR (1991) Genetic analysis of the adenovirus E4 6/7 transactivator: interaction with E2F and induction of a stable DNA-protein complex are critical for activity. J Virol 65: 5364–5373

    PubMed  CAS  Google Scholar 

  • Neill SD, Hemstrom C, Virtanen A, Nevins JR (1990) An adenovirus E4 gene product trans-activates E2 transcription and stimulates stable E2F binding through a direct association with E2F. Proc Natl Acad Sci USA 87: 2008–2012

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1981) Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 26: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1992) E2F: A link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1993) Transcriptional activation by the adenovirus E1A proteins. Semin Virol 4: 25–31

    Article  CAS  Google Scholar 

  • Nevins JR, Ginsberg HS, Blanchard J-M, Wilson MC, Darnell JE (1979) Regulation of the primary expression of the early adenovirus transcription units. J Virol 32: 727–733

    PubMed  CAS  Google Scholar 

  • Nishina H, Sato H, Suzuke T, Sato M, Iba H (1990) Isolation and characterization of fra-2, an additional member of the fos gene family. Proc Natl Acad Sci USA 87: 3619–3623

    Article  PubMed  CAS  Google Scholar 

  • Nomura N, Zu YL, Maekawa T, Tabata S, Akiyama T, Ishii S (1993) Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1. J Biol Chem 268: 4259–4266

    PubMed  CAS  Google Scholar 

  • Offringa R, Smits AMM, Houweling A, Bos JL, Van der Eb AJ (1988) Similar effects of adenovirus E1A and glucocorticoid hormones on the expression of the metalloprotease stromelysin. Nucleic Acids Res 16:10973–10984

    Article  PubMed  CAS  Google Scholar 

  • Offringa R, Gebel S, Van Dam H, Timmers M, Smits A, Zwart R, Stein B, Bos JL, Van der Eb AJ, Herrlich P (1990) A novel function of the transforming domain of E1 A: repression of AP-1 activity. Cell 62: 527–538

    Article  PubMed  CAS  Google Scholar 

  • Peeper DS, Zantema A, Dowdy SF, Van der Eb AJ (1992) Expression, purification, and functional characterization of adenovirus 5 and 12 E1A proteins produced in insect cells. Virology 190:733–745

    Article  PubMed  CAS  Google Scholar 

  • Pei R, Berk AJ (1989) Multiple transcription factor binding sites mediate adenovirus E1A transactivation. J Virol 63: 3499–3506

    PubMed  CAS  Google Scholar 

  • Perricaudet M, LeMoullec J-M, Tiollais P, Pettersson U (1980) Structure of two adenovirus type 12 transforming polypeptides and their evolutionary implications. Nature 288: 174–176

    Article  PubMed  CAS  Google Scholar 

  • Pines J, Hunter T (1990) Human Cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature 346: 760–763.

    Article  PubMed  CAS  Google Scholar 

  • Pope JH, Rowe WP (1964) Immunofluorescent studies of adenovirus 12 tumors and of cells transformed or infected by adenoviruses. J Exp Med 120: 577–587

    Article  PubMed  CAS  Google Scholar 

  • Pugh BF, Tjian R (1992) TATA-binding protein is a classless factor. J Biol Chem 267: 679–682

    PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Rooney R, Nevins JF (1987) Identification of an E1 A-inducible factor that interacts with sequences within the adenovirus E4 promoter. EMBO J 6: 4073–4081

    PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Bagchi S, Neill SD, Nevins JR (1990) Activation of the E2F transcription factor in adenovirus-infected cells involves E1 A-dependent stimulation of DNA-binding activity and induction of cooperative binding mediated by an E4 gene product. J Virol 64: 2702–2710

    PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Bagchi S, Devoto SH, Kraus VB, Moran E, Nevins JR (1991) Domains of the adenovirus E1A protein requiredfor oncogenic activity are also required for dissociation of E2F transcription factor complexes. Gene Dev 5: 1200–1211

    Article  PubMed  CAS  Google Scholar 

  • Reichel R, Kovesdi I, Nevins JR (1987) Developmental control of a promoter-specific factor that is also regulated by the E1A gene product. Cell 48: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Reichel R, Neill SD, Koveshdi I, Simon C, Raychaudhuri P, Nevins JR (1989) The adenovirus E4 gene, in addition to the E1A gene, is important for trans-activation of E2 transcription and for E2F activation. J Virol 63: 3643–3650

    PubMed  CAS  Google Scholar 

  • Richter JD, Slavicek JM, Schneider JF, Jones NC (1988) Heterogeneity of adenovirus type 5 E1A proteins: multiple serine phosphorylations induce slow-migrating electrophoretic variants but do not affect E1A-induced transcriptional activation or transformation. J Virol 62: 1948–1955

    PubMed  CAS  Google Scholar 

  • Rikitake Y, Moran E (1992) DNA-binding properties of the E1A-associated 300-kilodalton protein. Mol Cell Biol 12;2828–2836

    Google Scholar 

  • Robbins PD, Horowitz JM, Mulligan RC (1990) Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature 346: 668–671

    Article  PubMed  CAS  Google Scholar 

  • Roberts BE, Miller SJ, Kimelmann D, Cepko C, Lemischka IR, Mulligan RC (1985) Individual adenovirus type 5 early region 1A gene products elicit distinct alterations of cellular morphology and gene expression. J Virol 56: 404–413

    PubMed  CAS  Google Scholar 

  • Rochette-Egly C, Fromental C, Chambon P (1990) General repression of enhanson activity by the adenovirus-2 E1A proteins. Gene Dev 4: 137–150

    Article  PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Borrelli E (1987) Promoter trans-activation of protooncogenes c-fos and c-myc, but not Ha-ras, by products of adenovirus early region 1A. Proc Natl Acad Sci USA 84: 6430–6433

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Fujinaga K (1980) Mapping of adenovirus 12 mRNA’s transcribed from the transforming region. J Virol 36: 639–651

    PubMed  CAS  Google Scholar 

  • Sawadogo M, Roeder RG (1985) Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream the TATA box region. Cell 43: 165–175

    Article  PubMed  CAS  Google Scholar 

  • Schneider JF, Fisher F, Goding CR, Jones NC (1987) Mutational analysis of the adenovirus E1A gene: the role of transcriptional regulation in transformation. EMBO J 6: 2053–2060

    PubMed  CAS  Google Scholar 

  • Schönthal A, Herrlich P, Rahmsdorf HJ, Ponta H (1988) Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell 54: 325–334

    Article  PubMed  Google Scholar 

  • Schütte J, Throughlet J, Nau M, Segal S, Fedorko J, Minna J (1989) junB inhibits and c-fos stimulates the transforming and transactivating activities of c-jun. Cell 59: 987–997

    Article  PubMed  Google Scholar 

  • Sharp PA (1992) Diverse transcriptional functions of the multisubunit eucaryotic TFIID complex. Cell 68: 819–821

    Article  PubMed  CAS  Google Scholar 

  • Shenk T, Flint SJ (1991) Transcriptional and transforming activites of the adenovirus E1A proteins. Adv Cancer Res 57: 47–83

    Article  PubMed  CAS  Google Scholar 

  • Shirayoshi Y, Miyazaki J-I, Burke PA, Hamada K, Appella E, Ozato K (1987) Binding of multiple nuclear factors to the 5′ upstream regulatory element of the murine major histocompatibility class I gene. Mol Cell Biol 7: 4542–4548

    PubMed  CAS  Google Scholar 

  • Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chittenden T (1992) The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle regulated manner. Cell 68: 157–166

    Article  PubMed  CAS  Google Scholar 

  • Shivji MK, La Thangue NB (1991) Multicomponent differentiation-regulated trascription factors in F9 embryonal carcinoma stem cells. Mol Cell Biol 11: 1686–1695

    PubMed  CAS  Google Scholar 

  • Silver BJ, Bokar JA, Virgin JB, Valien EA, Milsted A, Nelsen J (1987) Cyclic-AMP regulation of the human glycoprotein hormone α-subunit gene is mediated by an 18 base-pair element. Proc Natl Acad Sci USA 84: 2198–2202

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Fisch TM, Benecke BJ, Nevins JR, Heintz N (1988) Identification of multiple, functionally distinct TATA elements, one of which is the target in the hsp70 promoter for E1A regulation. Cell 52: 723–729

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Rooney RJ, Fisch TM, Heintz N, Nevins JR (1990) E1A-dependent trans-activation of the c-fos promoter requires the TATAA sequence. Proc Natl Acad Sci USA 87: 513–517

    Article  PubMed  CAS  Google Scholar 

  • Slansky J, Li Y, Kaelin WG, Farnham PJ (1993) A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 13: 1610–1618

    PubMed  CAS  Google Scholar 

  • Sogawa K, Handa H, Fujisawa-Sehara A, Hiromasa T, Yamane M, Fujii-Kuriyama Y (1989) Repression of cytochrome P-450c gene expression by co-transfection with adenovirus E1A DNA. Eur J Biochem 181:539–544

    Article  PubMed  CAS  Google Scholar 

  • Spangler R, Bruner M, Dalie B, Harter ML (1987) Activation of adenovirus promoters by the adenovirus E1A protein in cell-free extracts. Science 237: 1044–1046

    Article  PubMed  CAS  Google Scholar 

  • Spector DJ, McGrogan M, Raskas HJ (1978) Regulation of the appearence of cytoplasmatic RNAs from region 1 of the adenovirus 2 genome. J Mol Biol 126: 395–414

    Article  PubMed  CAS  Google Scholar 

  • Spindler KR, Rosser DSE, Berk AJ (1984) Analysis of adenovirus transforming proteins from early regions 1A and 1B with antisera to inducible fusion antigens produced in Escherichia coli. J Virol 49: 132–141

    PubMed  CAS  Google Scholar 

  • Stein RW, Ziff EB (1987) Repression of insulin gene expression by adenovirus type 5 E1A proteins. Mol Cell Biol 7: 1164–1170

    PubMed  CAS  Google Scholar 

  • Stein RW, Corrigan M, Yaciuk P, Whelan J, Moran E (1990) Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol 64: 4421–4427

    PubMed  CAS  Google Scholar 

  • Stephens C, Harlow E (1987) Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kD and 35 kD proteins. EMBO J 6: 2027–2035

    PubMed  CAS  Google Scholar 

  • Svensson C, Bondesson M, Nyberg E, Under S, Jones N, Akusjarvi G (1991) Independent transformation acitivity by adenovirus 5 E1A-conserved regions 1 or 2 mutants. Virology 182: 553–561

    Article  PubMed  CAS  Google Scholar 

  • Thalmeier K, Synovzik H, Mertz R, Winnacker E-L, Lipp M (1989) Nuclear factor E2F mediates basic transcription and trans-activation by E1A of the human MYC promoter. Gene Dev 3: 527–436

    Article  PubMed  CAS  Google Scholar 

  • Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses. Science 137: 835–841

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto A, Ponticelli A, Berk AJ, Gaynor RB (1986) Genetic mapping of a major site of phosphorylation in adenovirus type 2 E1A proteins. J Virol 59: 14–22

    PubMed  CAS  Google Scholar 

  • Ulfendahl PJ, Under S, Kreivi J-P, Nordqvist K, Sevensson C, Hultberg H, Akusjärvi G (1987) A novel adenovirus 2 E1A mRNA encoding a protein with transcription activation properties. EMBO J 6:2037–2044

    PubMed  CAS  Google Scholar 

  • Van Dam H, Offringa R, Meijer I, Stein B, Smits AM, Herrlich P, Bos JL, Van der Eb AJ (1990) Differential effects of the adenovirus E1A oncogene on members of the AP-1 transcription factor family. Mol Cell Biol 10: 5857–5864

    PubMed  Google Scholar 

  • Van Dam H, Duyndam M, Rottier R, Bosch A, De Vries-Smits L, Herrlich P, Zantema A, Angel P, Van der Eb AJ (1993) Heterodimer formation of c-Jun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J 12: 479–487

    PubMed  Google Scholar 

  • Van Ormondt H, Galibert F (1984) Nucleotide sequences of adenovirus DNAs. In: Doerfler W (ed) The molecular biology of adenovirus II. Springer, Berlin Heidelberg New York, pp73–143 (Current topics in microbiology and immunology vol 110)

    Google Scholar 

  • Vasavada R, Eager KB, Barbanti Brodano G, Caputo A, Ricciardi RP (1986) Adenovirus type 12 early region 1A proteins repress class I HLA expression in transformed human cells. Proc Natl Acad Sci USA 83: 5257–5261

    Article  PubMed  CAS  Google Scholar 

  • Velcich A, Ziff EB (1985) Adenovirus E1A proteins repress transcription from the SV40 early promoter. Cell 40:705–716

    Article  PubMed  CAS  Google Scholar 

  • Velcich A, Kern FG, Basilico C, Ziff EB (1986) Adenovirus E1A proteins repress expression from polyomavirus early and late promoters. Mol Cell Biol 6: 4019–4025

    PubMed  CAS  Google Scholar 

  • Wang H-GH, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B, Moran E (1993a) Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth J Virol 67: 476–488

    PubMed  CAS  Google Scholar 

  • Wang H-GH, Yaciuk P, Ricciardi RP, Green M, Yokoyama K, Moran E (1993b) The E1A products of oncogenic adenovirus serotype 12 include amino-terminally modified forms able to bind the retinoblastoma protein but not p300. J Virol 67: 4804–4813

    PubMed  CAS  Google Scholar 

  • Weitraub SJ, Prater CA, Dean DC (1992) Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–261

    Article  Google Scholar 

  • Whitaker JL, Byrd PJ, Grand RJA, Gallimore PH (1984) Isolation and characterization of four adenovirus type 12-transformed human embryo kidney cell lines. Mol Cell Biol 4: 110–116

    Google Scholar 

  • Whyte P, Ruely HE, Harlow E (1988a) Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62: 257–265

    PubMed  CAS  Google Scholar 

  • Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E (1988b) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind the retinoblastoma gene product. Nature 334: 124–129

    Article  PubMed  CAS  Google Scholar 

  • Whyte P, Williamson NM, Harlow E (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Rosser DSE, Schmidt M, Berk AJ (1987) A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature 326: 512–515

    Article  PubMed  CAS  Google Scholar 

  • Yaciuk P, Moran E (1991) Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol Cell Biol 11: 5389–5397

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Hayashi Y, Hirose F, Matsuoka S, Shiroki K, Matsukage A (1992) Activation of the mouse proliferating cell nuclear antigen gene promoter by adenovirus type 12 E1A proteins. Jpn J Cancer Res 83:609–617

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Satake M, Murakami Y, Sakai M, Muramatsu M, Ito Y (1990) Differentiation of F9 embryonal carcinoma cells induced by the c-jun and activated c-Ha-ras oncogenes. Proc Natl Acad Sci USA 87: 8670–8674

    Article  PubMed  CAS  Google Scholar 

  • Yee S-P, Branton PE (1985) Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 149: 142–153

    Article  Google Scholar 

  • Yee S-P, Rowe DT, Tremblay ML, McDermott M, Branton PE (1983) Identification of human adenovirus early region 1 products by using antisera against synthetic peptides corresponding to the predicted carboxy termini. J Virol 46: 1003–1013

    PubMed  CAS  Google Scholar 

  • Yee AS, Reichet R, Koveshdi I, Nevins JR (1987) Promoter interaction of the E1A-inducible factor E2F and its potential role in the formation of a multi-component complex. EMBO J 6: 2061–2068

    PubMed  CAS  Google Scholar 

  • Yoshinaga S, Dean N, Han M, Berk AJ (1986) Adenovirus stimulation of transcription by RNA polymerase III: evidence of an E1A-dependent increase in transcription factor IIIC concentration. EMBO J 5: 343–354

    PubMed  CAS  Google Scholar 

  • Zamanian M, La Thangue NB (1992) Adenovirus E1A prevents the retinoblastoma gene product from repressing the activity of a cellular transcription factor. EMBO J 11: 2603–2610

    PubMed  CAS  Google Scholar 

  • Zerial M, Toschi L, Ryseck R-P, Schuermann M, Müller R, Bravo R (1989) The product of a novel growth factor activated gene, fosB, interacts with Jun proteins enhancing their DNA binding activity. EMBO J 8:805–813

    PubMed  CAS  Google Scholar 

  • Zerler B, Moran B, Maruyama K, Moomaw J, Grodzicker T, Ruley HE (1986) Adenovirus E1A coding sequences which enables ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol 6:887–899

    PubMed  CAS  Google Scholar 

  • Zu YL, Maekawa T, Matsuda S, Ishii S (1991) Complete putative metal finger and leucine zipper structures of CRE-BP1 are required for the E1A-induced trans-activation. J Biol Chem 266: 24134–24139

    PubMed  CAS  Google Scholar 

  • zur Hausen H (1973) Interactions of adenovirus type 12 with host cell chromosomes. Prog Exp Tumor Res 18: 240–259

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brockmann, D., Esche, H. (1995). Regulation of Viral and Cellular Gene Expression by E1A Proteins Encoded by the Oncogenic Adenovirus Type 12. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses III. Current Topics in Microbiology and Immunology, vol 199/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79586-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79586-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79588-6

  • Online ISBN: 978-3-642-79586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics