Skip to main content

Regulation of p53-Dependent Apoptosis by E1A and E1B

  • Chapter
Book cover The Molecular Repertoire of Adenoviruses III

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/3))

Abstract

Regulation of apoptosis (programmed cell death) is a fundamentally important process in development, is required for maintaining homeostasis (reviewed in Raff 1992), and is an important cellular defense against cancer and viral infection (reviewed in White and Gooding 1994; White 1993; White et al. 1994). The product of the p53 tumor suppressor gene is the most frequently mutated gene in human tumors (Hollstein et al. 1991; Malkin et al. 1990), and loss of p53 function in animal models dramatically increases the incidence of cancer (Donehower et al. 1992). Expression of the p53 protein will induce either growth arrest (Diller et al. 1990; Ginsberg et al. 1991; Kuerbitz et al. 1992; Martinez et al. 1991) or apoptosis (Yonish-Rouach et al. 1991), depending on the physiological circumstances. It is intriguing that p53 may function as a tumor suppressor by inducing cell death, as this would be the most effective means for irreversibly insuring the elimination of abnormal, emerging cancer cells. We have discovered that the transforming gene products of adenovirus encode activities that both activate (E1A) and repress (E1B) p53-dependent apoptosis in the normal course of productive infection in human cells and during the transformation of primary rodent cells (White et al. 1991, 1992, 1993; Rao et al. 1992; Debbas and White 1993; White and Gooding 1994; White 1993; Chiou et al. 1994a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babiss LE, Ginsberg HS, Darnell JE (1983) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5: 2552–2558

    Google Scholar 

  • Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ (1985) Cloning the chromosomal break-point of the t(14:18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41: 889–906

    Article  Google Scholar 

  • Barker DD, Berk AJ (1987) Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156: 107–121

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, deLeeuw MGW, Houweling A, van der Eb AJ (1986) Role of the adenovirus 1B tumor antigens in oncogenic transformation and lytic infection. Virology 150: 126–139

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette RP, Echeverri F, Mahboubi A, Green D (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359: 552–554

    Article  PubMed  CAS  Google Scholar 

  • Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nuñez G, Thompson C (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic death. Cell 74: 597–608

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai G (1983) Adenovirus 2 Ip+locus codes for a 19K tumor antigen that plays an essential role in cell transformation. Cell 33: 759–766

    Article  PubMed  CAS  Google Scholar 

  • Chiou S-K, Rao L, White E (1994a) Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 14: 2586–2563

    Google Scholar 

  • Chiou SK, Tseng CC, Rao L, White E (1994b) Functional complemenation of the adenovirus E1B 19K protein with Bcl-2 in the inhibition of apoptosis in infected cells. J Virol 68: 6553–6566

    PubMed  CAS  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852

    Article  PubMed  CAS  Google Scholar 

  • Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47: 19–28

    Article  PubMed  CAS  Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B. Genes Dev 7: 546–554

    Article  PubMed  CAS  Google Scholar 

  • Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Geghardt M, Bressac B (1990) p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 10: 5772–5781

    PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery JCA, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Dyson N, Harlow E (1992) Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv 12: 161–195

    PubMed  CAS  Google Scholar 

  • Edbauer C, Lamberti C, Tong J, Williams J (1988) Adenovirus type 12 E1B 19-kilodalton protein is not required for oncogenic transformation in rats. J Virol 62: 3265–3273

    PubMed  CAS  Google Scholar 

  • El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nature Gen 1: 45–49

    Article  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer E, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825

    Article  PubMed  CAS  Google Scholar 

  • Evan Gl, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128

    Article  Google Scholar 

  • Fanidi A, Harrington EA, Evan G (1992) Cooperative interaction between c-myc and bcl-2 protooncogenes. Nature 359: 554–556

    Article  PubMed  CAS  Google Scholar 

  • Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C (1992) Wild-type p53 activates transcription in vitro. Nature 358: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Sarabia MJ, Bischoff JR (1994) Bcl-2 associates with the ras-related protein R-ras p23. Nature 366: 274–275

    Article  Google Scholar 

  • Fields S, Jung SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249: 1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg D, Michael-Michalovitz D, Ginsberg D, Oren M (1991) Induction of growth arrest by a temperature-sensitive p53 mutant is correlated with increased nuclear localization and decreased stability of the protein. Mol Cell Biol 11: 582–585

    PubMed  CAS  Google Scholar 

  • Gooding LR, Aquino L, Duerksen-Hughes PJ, Day D, Horton TM, Yei S, Wold WSM (1991) The E1B-19K protein of group C adenoviruses prevents cytolysis by tumor necrosis factor of human cells but not mouse cells. J Virol 65: 3083–3094

    PubMed  CAS  Google Scholar 

  • Grand RJ, Roberts C, Gallimore PH (1985) Acylation of adenovirus type 12 early region 1 b-18kDa protein. FEBS Lett 181: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 cdk-interacting protein cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Ishii A, Yonehara S (1991) The E1B oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int Immunol 3: 343–351

    Article  PubMed  CAS  Google Scholar 

  • Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A (1993) Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci USA 90: 8479–8483

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO, Ellis RE, Hovitz HR (1992) Caenorhabditis elegans gene ced-9 protect cells from programmed cell death. Nature 356: 494–499

    Article  PubMed  CAS  Google Scholar 

  • Hermann CH, Mathews MB (1989) The adenovirus E1B 19-kilodalton protein stimulates gene expression by increasing DNA levels. Mol Cell Biol 9: 5412–5423

    Google Scholar 

  • Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer S (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris C (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC (1993) Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Johnson DJ, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Kane DJ, Sarafian TA, Anton R, Hahn R, Butler Gralla E, Selverstone Valentine J, Ord T, Bredsen DE (1993) Bcl-2 inhibition of neuronal death: decreased generation of reactive oxygen radical species. Science 262: 1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Kao CC, Yew PR, Berk AJ (1990) Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 179: 806–814

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311

    PubMed  CAS  Google Scholar 

  • Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL-2. Proc Natl Acad Sci USA 90: 3516–3520

    Article  PubMed  CAS  Google Scholar 

  • Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89: 7491–7495

    Article  PubMed  CAS  Google Scholar 

  • Lechner MS, Mack DH, Finicle AB, Crook T, Vousden KH, Laimins LA (1992) Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO J 11: 3045–3052

    PubMed  CAS  Google Scholar 

  • Leppard KN, Shenk T (1989) The adenovirus E1 B 55Kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J 8: 2329–2336

    PubMed  CAS  Google Scholar 

  • Levine AJ (1990) The p53 protein and its interactions with the oncogene products of the small DNA tumor viruses. Virology 177: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Lin EY, Orlofsky A, Berger MS, Prystowsky MB (1993) Characterization of A1, a novel hemopoieticspecific early response gene with sequence similarity to bcl-2. J Immunol 151: 1979–1988

    PubMed  CAS  Google Scholar 

  • Lowe S, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus-5 E1A and accompanies apoptosis. Genes Dev 7: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Mack DH, Vartikar J, Pipas JM, Laimins L (1993) Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363: 281–283

    Article  PubMed  CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni JFJ, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238

    Article  PubMed  CAS  Google Scholar 

  • Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4: 1689–1694

    PubMed  CAS  Google Scholar 

  • Martinez J, Georgoff I, Martinez J, Levine AJ (1991) Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev 5: 151–159

    Article  PubMed  CAS  Google Scholar 

  • McDonnell TJ, Korsmeyer SJ (1991) Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14:18). Nature 349: 254–256

    Article  PubMed  CAS  Google Scholar 

  • McGlade CJ, Tremblay ML, Yee S-P, Ross R, Branton PE (1987) Acylation of the 176R (19-kilodalton) early region 1B protein of human adenovirus type 5. J Virol 61: 3227–3234

    PubMed  CAS  Google Scholar 

  • McLorie W, McGlade CJ, Takayesu D, Branton PE (1991) Individual adenovirus E1B proteins induce transformation independently but by additive pathways. J Gen Virol 72: 1467–1471

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Zhu H, Roteilo R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Monagan P, Robertson D, Amos TA, Dyer MJ, Mason DY, Greaves MF (1992) Ultrasturctural localization of Bcl-2 protein. J Histochem Cytochem 40: 1819–1825

    Article  Google Scholar 

  • Moran E (1993) E1A/T antigen/E7 and the cell cycle. Curr Opin Gen Dev 3: 63–70

    Article  CAS  Google Scholar 

  • Neilan JG, Lu Z, Afonzo CL, Kutish GF, Sussman MD, Rock DL (1993) An african swine fever virus gene with similarity to the proto-oncogene bcl-2 and the Epstein-Barr virus gene BHRF1. J Virol 67: 4391–4394

    PubMed  CAS  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–428

    Article  PubMed  CAS  Google Scholar 

  • Oltvai ZN, Millman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619

    Article  PubMed  CAS  Google Scholar 

  • Pilder S, Logan J, Shenk T (1984) Deletion of the gene encoding the adenovirus 5 early region 1B—21,000-molecular weight polypeptide leads to degradation of viral and cellular DNA. J Virol 52: 664–671

    PubMed  CAS  Google Scholar 

  • Pilder S, Moore M, Logan J, Shenk T (1986) The adenovirus E1B 55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356: 398–400

    Article  Google Scholar 

  • Rao L, Debbas M, Sabbatini P, Hockenberry D, Korsmeyer S, White E (1992) The adenovirus E1A proteins induce apoptosis which is inhibited by the E1B 19K and Bcl-2 proteins. Proc Natl Acad Sci USA 89: 7742–7746

    Article  PubMed  CAS  Google Scholar 

  • Raycroft L, Wu H, Lozano G (1990) Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249: 1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P, Ho YS, Williams J, Levine AJ (1982) Adenovirus E1b-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd celluylar protein in transformed cells. Cell 28: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T, Levine AJ (1984) Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 25,000-dalton protein in productively infected cells. J Virol 49: 692–700

    PubMed  CAS  Google Scholar 

  • Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine AJ, Shenk T (1992) Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 89: 12028–12032

    Article  PubMed  CAS  Google Scholar 

  • Shiroki K, Kato H, Kawai S (1990) Tandemly repeated hexamer sequences within the beta interferon promoter can function as an inducible regulatory element in activation by the adenovirus E1B 19-kilodalton protein. J Virol 64: 3063–3068

    PubMed  CAS  Google Scholar 

  • Subramanian T, Chinnadurai G (1986) Separation of the functions controlled by the adenovirus 2 lp+ locus. Virology 150: 381–389

    Article  PubMed  CAS  Google Scholar 

  • Subramanian T, Kuppuswamy M, Gysbers J, Mak S, Chinnadurai G (1984) 19-kDa tumor antigen coded by early region E1 b of adenovirus 2 is required for efficient synthesis and for protection of viral DNA. J Biol Chem 259: 11777–11783

    PubMed  CAS  Google Scholar 

  • Subramanian T, Tarodi B, Govindarajan R, Boyd JM, Yoshida K, Chinnadurai G (1993) Mutational analysis of the transforming and apoptosis suppression activities of the adenovirus E1B 175R protein. Gene 124: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Takemori N, Riggs JL, Aldrich C (1968) Genetic studies with tumorigenic adenoviruses. I. Isolation of cytocidal (cyt) mutants of adenovirus type 12. Virology 36: 575–586

    Article  PubMed  CAS  Google Scholar 

  • Takemori N, Cladaras C, Bhat B, Conley AJ, Wold WSM (1984) cyt gene of adenovirus 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19,000-molecular-weight polypeptide. J Virol 52: 793–805

    PubMed  CAS  Google Scholar 

  • Taylor R (1993) Cell death makes for lively research. J Natl Inst Health Res 5: 59–62

    Google Scholar 

  • Telling GC, Williams J (1993) The E1B 19-kilodalton protein is not essential for transformation of rodent cells in vitro by adenovirus type 5. J Virol 67: 1600–1611

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM (1985) The t(14;18) chromosome translocations involved in B cell neoplasms result from mistakes in VDJ joining. Science 229: 1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Cory S, Adams TM (1988) Bcl-2 promotes the survival of haemopoietic cells and cooperates with c-myc to immortalize pre-b cells. Nature 335: 440–442

    Article  PubMed  CAS  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycyctic kidneys, and hypopigmented hair. Cell 75: 229–240

    Article  PubMed  CAS  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317

    Article  PubMed  CAS  Google Scholar 

  • White E (1993) Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. Proc Soc Exp Biol Med 204: 30–39

    PubMed  CAS  Google Scholar 

  • White E, Cipriani R (1989) Specific disruption of intermediate filaments and the nuclear lamina by the 19-kDa product of the adenovirus E1B oncogene. Proc Natl Acad Sci USA 86: 9886–9890

    Article  PubMed  CAS  Google Scholar 

  • White E, Cipriani R (1990) Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol 10:120–130

    PubMed  CAS  Google Scholar 

  • White E, Gooding LR (1994) Regulation of apoptosis by human adenoviruses. In: Tornei D, Cope F (eds) Apoptosis: the molecular basis for cell delath II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 111–141

    Google Scholar 

  • White E, Stillman B (1987) Expression of the adenovirus E1B mutant phenotypes is dependent on the host cell and on synthesis of E1A proteins. J Virol 61: 426–435

    PubMed  CAS  Google Scholar 

  • White E, Blose SH, Stillman B (1984a) Nuclear envelope localization of an adenovirus tumor antigen maintains the integrity of cellular DNA. Mol Cell Biol 4: 2865–2875

    PubMed  CAS  Google Scholar 

  • White E, Grodzicker T, Stillman BW (1984b) Mutations in the gene encoding the adenovirus E1B 19K tumor antigen cause degradation of chromosomal DNA. J Virol 52: 410–419

    PubMed  CAS  Google Scholar 

  • White E, Faha B, Stillman B (1986) Regulation of adenovirus gene expression in human WI38 cells by an E1B-encoded tumor antigen. Mol Cell Biol 6: 3763–3773

    PubMed  CAS  Google Scholar 

  • White E, Denton A, Stillman B (1988) Role of the adenovirus E1B 19,000-dalton tumor antigen in regulating early gene expression. J Virol 62: 3445–3454

    PubMed  CAS  Google Scholar 

  • White E, Cipriani R, Sabbatini P, Denton A (1991) The adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. J Virol 65: 2968–2978

    PubMed  CAS  Google Scholar 

  • White E, Sabbatini P, Debbas M, Wold WSM, Kusher DI, Gooding L (1992) The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor a. Mol Cell Biol 12: 2570–2580

    PubMed  CAS  Google Scholar 

  • White E, Rao L, Chiou S-K, Tseng C-C, Sabbatini P, Gonzalez M, Verwaerde P (1994) Regulation of apoptosis by the transforming gene products of adenovirus. In: Mihich E (ed) Apoptosis. Plenum, New York, pp 47–62

    Google Scholar 

  • Wyllie AH (1980a) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1980b) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Hannon G, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704

    Article  PubMed  CAS  Google Scholar 

  • Yew PR, Berk AJ (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357: 82–85

    Article  PubMed  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Leudox S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1ß-converting enzyme. Cell 75: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Zambetti GP, Levine AJ (1993) A comparison of the biological activities of wild-type and mutant p53. FASEB J 7: 855–865

    PubMed  CAS  Google Scholar 

  • Zambetti GP, Baronetti J, Walker K, Prives C, Levine AJ (1992) Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Gene Dev 6: 1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Zantema A, Frasen JAM, Davis-Olivier A, Ramaekers FCS, Vooijs GP, DeLeys B, Van Der Eb AJ (1985a) Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142: 44–58

    Article  PubMed  CAS  Google Scholar 

  • Zantema A, Schrier PI, Davis-Olivier A, Van Laar T, Vaessen RT, Van der Eb AJ (1985b) Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol Cell Biol 5: 3084–3091

    PubMed  CAS  Google Scholar 

  • Zhang S, Mak S, Branton PE (1992) Overexpression of the E1B 55-kilodalton (482R) protein of human adenovirus type 12 appears to permitt efficient transformation of primary baby rat kidney cells in the absence of the E1B 19K protein. J Virol 66: 2303–2309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

White, E. (1995). Regulation of p53-Dependent Apoptosis by E1A and E1B. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses III. Current Topics in Microbiology and Immunology, vol 199/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79586-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79586-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79588-6

  • Online ISBN: 978-3-642-79586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics