Skip to main content

Microbiological Requirements for Studies of Sepsis

  • Chapter

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 19))

Abstract

The development of novel treatment strategies for septic shock requires critical and accurate evaluation of new therapeutic agents. Much attention has focused on the nomenclature and clinical definitions of sepsis used to select patients for therapeutic trials [1–5]. This is particularly important as large multicenter trials are needed to detect a significant effect of therapy. Less attention, however, has been directed towards the bacteriological evaluation of patients with sepsis. Precise microbiological investigation of patients with sepsis is important because the techniques used both in the detection and definition of infection will influence the selection of patients, presentation of data and interpretation of results in these trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC, Fisher CJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA (1989) Sepsis syndrome: A valid clinical entity. Crit Care Med 17: 389–393

    Article  PubMed  CAS  Google Scholar 

  2. Bone RC, Sprung CL, Sibbald WJ (1992) Definitions for sepsis and organ failure. Crit Care Med 20: 724–725

    Article  PubMed  CAS  Google Scholar 

  3. American College of Chest Physicians/Society of Critical Care Medicine consensus conference committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20: 864–874

    Article  Google Scholar 

  4. Baumgartner JD, Bula C, Vaney C, Wu MM, Eggimann P, Perret C (1992) A novel score for predicting the mortality of septic shock patients. Crit Care Med 20: 953–960

    Article  PubMed  CAS  Google Scholar 

  5. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: A severity of disease classification system. Crit Care Med 20: 818–829

    Article  Google Scholar 

  6. van Deuren M, Santman FW, van Dalen R, Sauerwein RW, Span LF, van der Meer JW (1992) Plasma and whole blood exchange in meningococcal sepsis. Clin Infect Dis 15: 424–430

    Article  PubMed  Google Scholar 

  7. Ziegler EJ, McCutchan JA, Fierer J, et al (1982) Treatment of gram-negative bacteremia and shock with human anti-serum to a mutant Escherichia coli. N Engl J Med 307: 1225–1230

    Article  PubMed  CAS  Google Scholar 

  8. Ziegler EJ, Fisher CJ, Sprung CL, et al (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. N Engl J Med 324: 429–436

    Article  PubMed  CAS  Google Scholar 

  9. Greenman RL, Schein RMH, Martin MA, et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of Gram-negative sepsis. JAMA 266: 1097–1102

    Article  PubMed  CAS  Google Scholar 

  10. Wenzel R, Bone R, Fein A (1991) Results of a second double-blind, randomized, controlled trial of antiendotoxin antibody E5 in Gram-negative sepsis. In: 31st Inter- sciences Conferences on Antimicrobial Agents and Chemotherapy: 294 (Abst)

    Google Scholar 

  11. Baselski V (1993) Laboratory diagnosis of infectious diseases: Microbiologic diagnosis of ventilator-associated pneumonia. Infect Dis Clin N Am 7: 331–357

    CAS  Google Scholar 

  12. Bone RC, Fisher CJ, Clemmer TP, et al (1987) A controlled trial of high-dose methyl- prednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317: 653–658

    Article  PubMed  CAS  Google Scholar 

  13. The Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med 317: 659–665

    Article  Google Scholar 

  14. Hackshaw KV, Parker GA, Roberts JW (1990) Naloxone in septic shock. Crit Care Med 18: 47–51

    Article  PubMed  CAS  Google Scholar 

  15. Fisher CJ, Opal SM, Dhainaut JF, et al (1993) Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. Crit Care Med 21: 318–327

    Article  PubMed  Google Scholar 

  16. DeMaria AB, Craven DE, Heffernan JJ, Mcintosh TK, Grindlinger GA, McCabe WR (1985) Naloxone versus placebo in treatment of septic shock. Lancet 1: 1363–1365

    Article  PubMed  CAS  Google Scholar 

  17. The Intravenous Immunoglobulin Collaborative Study Group (1992) Prophylactic in-travenous administration of standard immune globulin as compared with core-lipopoly- saccharide immune globulin in patients at high risk of postsurgical infection. N Engl J Med 327: 234–240

    Article  Google Scholar 

  18. Thrupp LD, Cleeland R, Jones RN, et al (1992) General guidelines for clinical bacteriology. Clin Infect Dis 15 (Suppl 1): S339–S346

    Article  PubMed  Google Scholar 

  19. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM (1988) CDC definitions for nosocomial infections. Am J Infect Control 16: 128–140

    Article  PubMed  CAS  Google Scholar 

  20. Spencer RC (1993) National prevalence survey of hospital-acquired infections: Definitions. J Hosp Infect 24: 69–76

    Article  Google Scholar 

  21. Bryant J, Strand C (1987) Reliability of blood culture collected from intravascular catheters versus venupuncture. Am J Clin Pathol 88: 113–116

    PubMed  CAS  Google Scholar 

  22. Washington II J (1975) Blood cultures: Principles and techniques. Mayo Clin Proc 50: 91–97

    PubMed  Google Scholar 

  23. Smith-Elekes S, Weinstein MP (1993) Laboratory diagnosis of infectious diseases. Blood cultures. Infect Dis Clin N Am 7: 221–234

    CAS  Google Scholar 

  24. Reller LB, Murray P, Maclowery JD (1982) Cumitech 1 A. Blood cultures I I. American Society for Microbiology. Washington DC

    Google Scholar 

  25. Krumholz H, Cummings S, York M (1990) Blood culture phlebotomy: Switching needles does not prevent contamination. Ann Intern Med 113: 290–292

    PubMed  CAS  Google Scholar 

  26. Kreger BE, Craven DE, Carling PC, McCabe WR (1980) Gram-negative bacteremia III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 68: 332–343

    Article  PubMed  CAS  Google Scholar 

  27. Mermel LA, Maki DG (1993) Detection of bacteremia in adults: Consequences of culturing an inadequate volume of blood. Ann Intern Med 119: 270–272

    PubMed  CAS  Google Scholar 

  28. Hall MM, Ilstrup DM, Washington II JA (1976) Effect of volume of blood cultured on the detection of bacteremia. J Clin Microbiol 3: 643–645

    PubMed  CAS  Google Scholar 

  29. Arpi M, Bentzon MW, Jensen J, Frederiksen W (1989) Importance of blood volume cultured in the detection of bacteremia. Eur J Clin Micro Infect Dis 8: 838–842

    Article  CAS  Google Scholar 

  30. Brown DF, Warren RE (1990) Effect of sample volume on yield of positive blood cultures from adult patients with haematological malignancy. J Clin Pathol 43: 777–779

    Article  PubMed  CAS  Google Scholar 

  31. Plorde JJ, Tenover FC, Carlson LG (1985) Specimen volume versus yield in the BAC- TEC blood culture system. J Clin Microbiol 22: 292–295

    PubMed  CAS  Google Scholar 

  32. Shanson DC, Thomas F, Wilson D (1984) Effect of volume of blood cultured on detection of Streptococcus viridans bacteraemia. J Clin Pathol 37: 568–570

    Article  PubMed  CAS  Google Scholar 

  33. Kennaugh J, Gregory W, Powell K, et al (1984) The effect of dilution during culture on detection of low concentrations of bacteria in blood. Pediatr Infect Dis 3: 317–318

    Article  PubMed  CAS  Google Scholar 

  34. Weinstein MP, Reller B, Murphy JR, Lichtenstein KA (1983) The clinical significance of positive blood cultures: A comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. Rev Infect Dis 5: 35–53

    Google Scholar 

  35. Washington II J, Illstrup D (1986) Blood cultures: Issues and controversies. Rev Infect Dis 8: 792–802

    Google Scholar 

  36. Weinstein M, Mirrett S, Wilson M, et al (1991) Controlled evaluation of BACTEC Plus 26 and Roche Septi-Chek blood culture bottles. J Clin Microbiol 29: 879–882

    PubMed  CAS  Google Scholar 

  37. Wilson M, Weinstein M, Reimer L (1992) Controlled comparison of the BacT/Alert and BACTEC 660/730 nonradiometric blood culture systems. J Clin Microbiol 30: 323–329

    PubMed  CAS  Google Scholar 

  38. Kim M, Gottshall R, Schwabe L, et al (1987) Effect of agitation and frequent subculturing on recovery of aerobic and facultative anaerobic pathogens by Roche Septi- Chek and BACTEC blood culture systems. J Clin Microbiol 25: 312–315

    PubMed  CAS  Google Scholar 

  39. Hawkins B, Peterson E, de la Maza L (1986) Improvement of positive blood culture detection by agitation. Diag Microbiol Infect Dis 5: 207–213

    CAS  Google Scholar 

  40. Dorsher C, Rosenblatt J, Wilson W, et al (1991) Anaerobic bacteremia: Decreasing rate over a 15 year-period. Rev Infect Dis 13: 633–636

    Article  PubMed  CAS  Google Scholar 

  41. Sharp S, Goodman J, Poppiti R (1991) Comparison of blood culture results after five and seven days of incubation using the BACTEC NR660. Diag Microbiol Infect Dis 14: 177–179

    Article  CAS  Google Scholar 

  42. Henry N, Grewel C, VanGrevenhof P, et al (1984) Comparison of lysis-centrifugation with a biphasic blood culture medium for the recovery of aerobic and facultatively anarobic bacteria. J Clin Microbiol 20: 413–416

    PubMed  CAS  Google Scholar 

  43. Brannon P, Kiehn TE (1985) Large scale clinical comparison of the lysis centrifugation and radiometric systems for blood culture. J Clin Microbiol 22: 951–954

    PubMed  CAS  Google Scholar 

  44. Murray P (1991) Comparison of the lysis-centrifugation and agitated biphasic blood culture systems for the detection of fungemia. J Clin Microbiol 29: 96–98

    PubMed  CAS  Google Scholar 

  45. Peterson L, Shanholtzer C, Mohn M, et al (1983) Improved recovery of microorganisms from patients receiving antibiotic with the antimicrobial removal device. Am J Clin Pathol 80: 692–696

    PubMed  CAS  Google Scholar 

  46. Wright AJ, Thompson RL, McLimans CA, et al (1982) The antimicrobial removal device: A microbiological and clinical evaluation. Am J Clin Pathol 78: 173–177

    PubMed  CAS  Google Scholar 

  47. Leanette EH, Balows A, Hausler WJ, Shadomy HJ (eds) (1991) Manual of Clinical Microbiology. American Society for Microbiology, Washington, DC, USA

    Google Scholar 

  48. Maki DG, Weise CE, Sarafin HW (1977) A semiquantitative method for identifying intravenous catheter-related infection. N Engl J Med 296: 1305–1309

    Article  PubMed  CAS  Google Scholar 

  49. Cleri DJ, Corrado ML, Seligman SJ (1980) Quantitative culture of intravenous catheters and other intravascular inserts. J Infect Dis 141: 781–786

    Article  PubMed  CAS  Google Scholar 

  50. Collignon P, Chan R, Munro R (1987) Rapid diagnosis of intravascular-related sepsis. Arch Intern Med 147: 1609–1612

    Article  PubMed  CAS  Google Scholar 

  51. Zuffrey J, Rime B, Franciou P, et al (1988) Simple method for rapid diagnosis of catheter-associated infection by direct acridine orange staining of catheter tips. J Clin Microbiol 26: 175–177

    Google Scholar 

  52. Felices FJ, Hernandez JL, Ruiz J (1979) Use of central venous catheter to obtain blood cultures. Crit Care Med 7: 78–79

    Article  PubMed  CAS  Google Scholar 

  53. Tonnesen A, Peuler M, Lockwood WR (1976) Cultures of blood drawn by catheters vs venipuncture. JAMA 235: 1877

    Article  PubMed  CAS  Google Scholar 

  54. MacFarlane JT, Finch RG, Ward MJ (1982) Hospital study of adult community- acquired pneumonia. Lancet 2: 255–258

    Article  PubMed  CAS  Google Scholar 

  55. Donowitz GR, Mandell GL (1990) Acute pneumonia. In: Mandell GL, Douglas RG, Bennett JE (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 540–554

    Google Scholar 

  56. Barrett-Connor E (1971) The non-value of sputum culture in the diagnosis of pneumococcal pneumonia. Am Rev Resp Dis 103: 845–848

    PubMed  CAS  Google Scholar 

  57. Murray PR, Washington II JA (1975) Microbiologic and bacteriologic analysis of ex-pectorated sputum. Mayo Clinic Proc 50: 339–344

    CAS  Google Scholar 

  58. Wimberly NW, Bass JB, Boyd BW, et al (1982) Use of a bronchoscopic protected catheter brush for the diagnosis of pulmonary infections. Chest 81: 556–582

    Article  Google Scholar 

  59. Palmer DL, Davidson M, Lusk R (1980) Needle aspiration of the lung in complex pneumonias. Chest 78: 16–21

    Article  PubMed  CAS  Google Scholar 

  60. Geckeler RW, Gremillion DH, McAllister CK, et al (1977) Microscopic and bacteriological comparison of paired sputa and transtracheal aspirates. J Clin Microbiol 6: 396–399

    Google Scholar 

  61. Bartlett JG, Rosenblatt JE, Finegold SM (1973) Percutaneous transtracheal aspiration in the diagnosis of anaerobic pulmonary infection. Ann Intern Med 79: 535–540

    PubMed  CAS  Google Scholar 

  62. Krook A, Homberg H (1987) Pneumococcal antigens in sputa. Diag Microbiol Infect Dis 7: 73–75

    Article  CAS  Google Scholar 

  63. Andrews CP, Coalson JJ, Smith JD, Johanson WG (1981) Diagnosis of nosocomial bacterial pneumonia in acute, diffuse lung injury. Chest 80: 254–258

    Article  PubMed  CAS  Google Scholar 

  64. Meduri GU (1993) Laboratory diagnosis of infectious diseases: Diagnosis of ventilator- associated pneumonia. Infect Dis Clin N Am 7: 295–329

    CAS  Google Scholar 

  65. Pollock HM, Hawkins EL, Bonner JR, et al (1983) Diagnosis of bacterial pulmonary infections with quantitative protected catheter cultures obtained during bronchoscopy. J Clin Microbiol 17: 255–259

    PubMed  CAS  Google Scholar 

  66. A’Court CHD, Gerard CS, Crook D, et al (1993) Microbiological lung surveillance in mechanically ventilated patients, using non-directed bronchial lavage and quantitative culture. Q J Med 86: 635–648

    PubMed  Google Scholar 

  67. Marquette CH, Georges H, Wallet F, et al (1993) Diagnostic efficiency of endotracheal aspirates with quantitative bacterial cultures in intubated patients with suspected pneumonia. Am Rev Resp Dis 148: 138–144

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lynn, W.A., Cohen, J. (1995). Microbiological Requirements for Studies of Sepsis. In: Vincent, JL., Sibbald, W.J. (eds) Clinical Trials for the Treatment of Sepsis. Update in Intensive Care and Emergency Medicine, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79224-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79224-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79226-7

  • Online ISBN: 978-3-642-79224-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics