Skip to main content

Nonlinearities in Phosphogenesis and Phosphorus-Carbon Coupling and Their Implications for Global Change

  • Conference paper

Part of the book series: NATO ASI Series ((ASII,volume 4))

Abstract

The exponential increase in mining of igneous and sedimentary phosphates, and their utilization in agriculture, industry, and the household in the last few decades have lead to a progressive mobilization of phosphorus, which affects the global phosphorus cycle to an increasing degree (Sheldon, 1969, 1982; Stumm, 1973; Lerman et al., 1975). The present-day anthropogenic share in the transfer of reactive phosphorus from sedimentary and igneous reservoirs into the marine and terrestrial biosphere amounts to an estimated 0.4x1012 g P/yr. This number approximates 35% of total phosphorus influx rates into the oceans and, according to Mackenzie et al. (this volume), may balance 10% of the yearly increase in atmospheric CO2 from manmade sources, assuming an average atomic C/P ratio of 250:1, and a complete and permanent storage of the biologically produced carbon (Figure 1; cf. Mackenzie et al.; Meybeck, both this volume).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur M. A. and Jenkyns H. C. (1981) Phosphorites and paleoceanography. Oceanol. Acta Spec. Vol., pp. 83–96.

    Google Scholar 

  • Arthur M. A., Jenkyns H. C., Brumsack H. J. and Schianger S. O. (1990) Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: Cretaceous Resources, Events and Rhythms (eds. R. N. Ginsburg and B. Beaudoin ). Kluwer Academic Publishers, Dordrecht, pp. 75–119.

    Google Scholar 

  • Arthur M. A., Kump L. R., Dean W. E. and Larson R. L. (1991) Superplume, supergreenhouse? EOS, Trans. Am. Geophys. Union, Suppl. 72/17, 301.

    Google Scholar 

  • Arthur M. A. and Schlanger S. O. (1979) Cretaceous “Oceanic Anoxic Events” as causal factors in development of reef-reservoired giant oil fields. Am. Assoc. Petr. Geol. Bull. 63, 870–885.

    Google Scholar 

  • Baksi A. K. (1990) Timing and duration of Mesozoic-Tertiary flood-basalt volcanism. EOS, Trans. Am. Geophys. Union 71, 1835–1840.

    Google Scholar 

  • Baksi A. K., Fodor R. V. and Farrar E. (1991a) Preliminary results of 40Ar/39Ar dating studies on rocks from the Serra Geral flood-basalt province and the Brazilian continental margins. EOS, Trans Am Geophys Union, Suppl. 72/17, 300.

    Google Scholar 

  • Baksi A. K., Raybarman T., Paul D. K., Scott R. and McKay K. (1991b) Geochronology and geochemical data for the Rajmahal-Bengal-Sylhet traps: implications for a genetic link to the Kerguelen Hotspot. EOS, Trans. Am. Geophys. Union, Suppl. 72/17, 300.

    Google Scholar 

  • Bakun A. (1990) Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201.

    Google Scholar 

  • Baturin G. N. (1988) Disseminated phosphorus in oceanic sediments–a review. Mar. Geol. 84, 95–104.

    Google Scholar 

  • Bentor Y. K. (1980) Phosphorites–the unsolved problems. In: Marine Phosphorites–Geochemistry, Occurrence, Genesis (ed. Y. K. Bentor). Soc. Econ. Paleontol. Mineral. Spec. Publ. 29, 3–18.

    Google Scholar 

  • Berger W. H., Smetacek V. S. and Wefer G (1989) Ocean productivity and paleo-productivity–an overview. In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley, Chichester, pp. 1–34.

    Google Scholar 

  • Berger W. H. and Winterer E. L. (1974) Plate stratigraphy and the fluctuating carbonate line. In: Pelagic Sediments: on Land and under the Sea (eds. K. J. Hsü and H. C. Jenkyns). Int. Assoc. Sedimentol. Spec. Publ. 1, 11–48.

    Google Scholar 

  • Berner R. A. (1990) Atmospheric carbon dioxide levels over Phanerozoic time. Science 249, 1382–1386.

    Google Scholar 

  • Berner R. A. and Canfield D. E. (1989) A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361.

    Google Scholar 

  • Berner R. A. and Lasaga A. C. (1989) Modeling the geochemical carbon cycle. Sci. Am. 260/3, 74–81.

    Google Scholar 

  • Besairie H. (1961) Les Ressources Minérales de Madagascar. Ann. Géol. Madagascar 30, 116 p.

    Google Scholar 

  • Besairie H. and Collignon M. (1972) Géologie de Madagascar. I. Les Terrains Sédimentaires. Ann. Géol. Madagascar 35, 324 p.

    Google Scholar 

  • Bralower T. J., Leckie R. M., Sliter W. V., Allard D., Arthur M. A. and Schianger S. O. (1990) Oceanwide anoxia in the early Aptian. Soc. Econom. Paleontol. Mineral, Res. Confer. “Cretaceous Resources, Events, and Rhythms”, August 20–24, 1990, Denver, Colorado, Abstr. Vol.

    Google Scholar 

  • Bréhéret J. G. (1991) Phosphatic concretions in black facies of the Aptian-Albian Marnes bleues Formation of the Vocontian basin (SE France), and at DSDP Site 369: Evidence of benthic microbial activity. Cret. Res. 12, 411–435.

    Google Scholar 

  • Bréhéret J. G. and Delamette M. (1989) Correlations between Mid-Cretaceous Vocontian black shales and Helvetic phosphorites in the Western External Alps. In: Cretaceous of the Western Tethys (ed. J. Wiedmann ). Schweizerbart, Stuttgart, pp. 637–655.

    Google Scholar 

  • Caldeira K. and Rampino M. R. (1991) The Mid-Cretaceous super plume, carbon dioxide, and global warming. Geophys. Res. Lett. 18, 987–990.

    Google Scholar 

  • Coccioni R., Franchi R., Nesci O., Wezel F. C., Battistini F. and Pallechi P. (1989) Stratigraphy and mineralogy of the Selli Level (early Aptian) at the base of the Marne a Fucoidi in the Umbro-Marchean Apennines (Italy). In: Cretaceous of the Western Tethys (ed. J. Wiedmann ). Schweizerbart, Stuttgart, pp. 563–584.

    Google Scholar 

  • Codispoti L. A. (1989) Phosphorus vs. nitrogen limitation of new and export production. In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley, Chichester, pp. 377–394.

    Google Scholar 

  • Cook P. J. (1984) Spatial and temporal controls on the formation of phosphate deposits–A review. In: Phosphate Minerals (eds. J. O. Nriagu and P. B. Moore ). Springer-Verlag, Berlin, pp. 242–274.

    Google Scholar 

  • Cook P. J. and McElhinny M. W. (1979) A re-evaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ. Geol. 74, 315–330.

    Google Scholar 

  • Compton J. S., Snyder S. W. and Hodell D. A. (1990) Phosphogenesis and weathering of shelf sediments from the southeastern United States: Implications for Miocene 6 13 C excursions and global cooling. Geology 18, 1227–1231.

    Google Scholar 

  • Crowley T. J. and North G. R. (1988) Abrupt climate change and extinction events in earth history. Science 240, 996–1002.

    Google Scholar 

  • Dean W. E. and Arthur M. A. (1987) Inorganic and organic geochemistry of Eocene to Cretaceous strata recovered from the lower continental rise, North American Basin, Site 603, DSDP. In: Init. Repts. DSDP (eds. J. E. Van Hinte, S. W. Wise, et al). 93, 1093–1137.

    Google Scholar 

  • Delamette M. (1988) L’Evolution du Domaine Helvétique (entre Bauges et Morcles) de l’Aptien Supérieur au Turonien. Publ. Dép. Géol. Paléontol. Univ. Genève 5, 316 p.

    Google Scholar 

  • Dott R. H. Jr. (1988) Something old, something new, something borrowed, something blue–a hindsight and foresight of sedimentary geology. J. Sediment. Petrol. 58, 358–364.

    Google Scholar 

  • Eppley R. W. (1989) New production: History, methods, problems. In: Productivity of the Ocean: Present and Past (eds. W. H. Berger, V. S. Smetacek and G. Wefer ). John Wiley, Chichester, pp. 85–97.

    Google Scholar 

  • Erba E. and Lottaroli F. (1990) Timing and paleoceanography of Aptian-Albian anoxic events from Italian sequences: The contribution of calcareous nannofossils. Soc. Econom. Paleontol. Mineral, Res. Confer. “Cretaceous Resources, Events, and Rhythms”, August 20–24, 1990, Denver, Colorado, Abstr. Vol.

    Google Scholar 

  • Fischer A. G. and Arthur M. A. (1977) Secular variations in the pelagic realm. In: Deep-Water Carbonate Environments (eds. H. E. Cook and P. Enos). Soc. Econ. Paleontol. Mineral Spec. Publ. 25, 19–50.

    Google Scholar 

  • Föllmi K. B. (1989) Evolution of the Mid-Cretaceous Triad: Platform Carbonates, Phosphatic Sediments, and Pelagic Limestones along the Northern Tethys Margin. Lecture Notes Earth Sci. 23, 153 p.

    Google Scholar 

  • Föllmi K. B. (1990) Condensation and phosphogenesis: example of the Helvetic mid-Cretaceous (northern Tethyan margin). In: Phosphorite Research and Development (eds. A. J. G. Notholt and I. Jarvis). Geol. Soc. Spec. Publ. 52, 237–252.

    Google Scholar 

  • Föllmi K. B. and Von Breymann M. (in press) Phosphates and glauconites of Leg 128, Sites 798 and 799 (Japan Sea). In: Proc. ODP Sci. Res. (eds. K. Tamaki, J. C. Ingle, K. Suyehiro, K. Pisciotto, et al.). 127/128.

    Google Scholar 

  • Föllmi K. B. and Garrison R. E. (1991) Phosphatic sediments, ordinary or extraordinary deposits? The example of the Miocene Monterey Formation (California). In: Controversies in Modern Geology (eds. D. Müller, J. A. McKenzie and H. Weissert ). Academic Press, London, pp. 55–84.

    Google Scholar 

  • Föllmi K. B., Garrison R. E. and Grimm K. A. (1991) Stratification in phosphatic sediments: Illustrations from the Neogene of California. In: Events and Cycles in Stratigraphy (eds. G. Einsele, W. Ricken and A. Seilacher ). Springer-Verlag, Berlin, pp. 492–507.

    Google Scholar 

  • Föllmi K. B. and Ouwehand P. J. (1987) Garschella-Formation und Götzis-Schichten (Aptian-Coniacian): Neue stratigraphische Daten aus dem Helvetikum der Ostschweiz und des Vorarlbergs. Eclogae Geol. Heiv. 80, 141–191.

    Google Scholar 

  • Frakes L. A. and Bolton B. R. (1984) Origin of manganese giants: sea-level change and anoxic-oxic history. Geology 12, 83–86.

    Google Scholar 

  • Froelich P. N. (1984) Interaction of the marine phosphorus and carbon cycles. Publ. Jet. Prop. Lab. NASA, Pasadena, 84/12, 141–176.

    Google Scholar 

  • Froelich P. N., Bender M. L., Luedtke N. A., Heath G. R. and DeVries T. (1982) The marine phosphorus cycle. Am. J. Sci. 282, 474–511.

    Google Scholar 

  • Gächter R., Meyer J. S. and Mares A. (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33, 1542–1558.

    Google Scholar 

  • Garrels R. M., Mackenzie F. T. and Hunt C. (1975) Chemical Cycles and the Global Environment. Kaufmann, Los Altos, 206 p.

    Google Scholar 

  • Garrison R. E., Kastner M. and Kolodny Y. (1987) Phosphorites and phosphatic rocks in the Monterey Formation and related Miocene units, coastal California. In: Cenozoic Basin Development of Coastal California (eds. R. V. Ingersoll and W. G. Ernst ). Rubey Vol VI, Prentice-Hall, New Jersey, pp. 348–381.

    Google Scholar 

  • Garrison R. E., Kastner M. and Reimers C. E. (1990) Miocene phosphogenesis in California. In: Phosphate Deposits of the World, 3, Neogene to Modern Phosphorites (eds. W. C. Burnett and S. R. Riggs ). Cambridge University Press. pp. 285–300.

    Google Scholar 

  • Glenn C. R. and Arthur M. A. (1990) Anatomy and origin of a Cretaceous phosphoritegreensand giant, Egypt. Sedimentology 37, 123–154.

    Google Scholar 

  • Hadji S. (1991) Stratigraphie isotopique des carbonates pelagiques (Jurassique supérieur-Crétacé inférieur) du Bassin d’Ombrie-Marckes (Italie). Ph.D. Thesis Univ. Pierre et Marie Curie, Paris, 118 p.

    Google Scholar 

  • Haldimann P. A. (1977) Sedimentologische Entwicklung der Schichten an einer Zyklengrenze der helvetischen Unterkreide: Pygurus-Schichten und Gemsmättli-Schicht (Valanginian/Hauterivian) zwischen Thunersee und St. Galler Rheintal. Mitt. Geol. Inst. ETH Univ. Zürich NF 219, 183 p.

    Google Scholar 

  • Hallam A. (1984) Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 47, 195–223.

    Google Scholar 

  • Harland W. B., Armstrong R. L., Cox A. V., Craig L. E., Smith A. G. and Smith D. G. (1990) A Geological Time Scale 1989. Cambridge University Press, 263 p.

    Google Scholar 

  • Iacumin P., Piccirillo E. M. and Longinelli A. (1991) Oxygen isotopic composition of Lower Cretaceous tholeiites and Precambirna basement rocks from the Parana basin (Brazil): The role of water-rock interaction. Chem. Geol. 86, 225–237.

    Google Scholar 

  • Ilyin A. V. and Krasilnikova N. A. (1989) Late Mesozoic phosphorite basins, USSR. In: Notholt A. J. G., Sheldon R. P. and Davidson D. F. (eds) Phosphate Deposits of the World, 2, Phosphate Rock Resources. Cambridge University Press, pp. 518–524.

    Google Scholar 

  • Isaacs C. M. (1987) The Miocene Monterey Formation - Depositional and diagenetic facies along the Santa Barbara, California coastal area. In: Field Notes on the Monterey Formation, Santa Barbara Area, California (ed. C. M. Isaacs). Am. Assoc. Petrol. Geol. Stud. Chapt. Fieldtrip 1 Guide Book, pp. 1–30.

    Google Scholar 

  • Jarvis I. (1980) The initiation of phosphatic chalk sedimentation–The Senonian (Cretaceous) of the Anglo-Paris Basin. In: Marine Phosphorites–Geochemistry, Occurrence, Genesis (ed. Y. K. Bentor). Soc. Econ. Paleontol. Mineral Spec. Publ. 29, 167–192.

    Google Scholar 

  • Kemper E. (1983) Über Kalt-und Warmzeiten der Unterkreide. Zitteliana 10, 359–369.

    Google Scholar 

  • Kennedy W. J. and Garrison R. E. (1975) Morphology and genesis of hardgrounds and nodular chalk in the Upper Cretaceous of Southern England. Lethaia 8, 339–360.

    Google Scholar 

  • Klemme H. D. and Ulmishek G. F. (1991) Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors. Bull. Am. Assoc. Petrol. Geol. 75, 1809–1851.

    Google Scholar 

  • Kuzvart M. and Konta J. (1968) Kaoline and laterite weathering crusts in Europe. Acta Univ. Carol. Geol. Ser., Prague, 1/2, 1–19.

    Google Scholar 

  • Larson R. L. (1991a) The latest pulse of the earth: evidence for a Mid-Cretaceous super plume. Terra Abstr. 3, 306.

    Google Scholar 

  • Larson R. L. (1991b) Consequences of super plumes. EOS, Trans. Am. Geophys. Union Suppl. 72/17, 301.

    Google Scholar 

  • Leanza H. A., Spiegelman A. T., Hugo C. A., Mastandrea O. and Oblitas C. J. (1989) Phanerozoic sedimentary phosphatic rocks of Argentina. In: Phosphate Deposits of the World, 2, Phosphate Rock Resources (eds. A. J. G. Notholt, R. P. Sheldon and D. F. Davidson). Cambridge University Press, pp. 147–158.

    Google Scholar 

  • Lerman A., Mackenzie F. T. and Garrels R. M. (1975) Modeling of geochemical cycles: Phosphorus as an example. Geol. Soc. Am. Memoir 142, 205–218.

    Google Scholar 

  • Lini A., Bisping M. and Weissert H. (1991) Towards an Early Cretaceous carbon isotope stratigraphy. Terra Abstr. 3, 286.

    Google Scholar 

  • Lini A., Weissert H. and Erba E. (1990) A Valanginian carbon isotope event: document of low frequency changes in the Early Cretaceous carbon cycle. Int. Assoc. Sedimentol., 13th Int Congr, Nottingham, Book Poster Abstr., pp. 134.

    Google Scholar 

  • Lini A., Weissert H. and Erba E. (1992) The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova. (in press)

    Google Scholar 

  • Lovelock J. (1988) The Ages of Gaia. Bantam, New York, 252 p.

    Google Scholar 

  • May R. M. (1976) Simple mathematical models with very complicated dynamics. Nature 261, 459–467.

    Google Scholar 

  • May R. M. and Oster G. F. (1976) Bifurcations and dynamic complexity in simple ecological models. Am. Naturalist 110, 573–599.

    Google Scholar 

  • Notholt A. J. G., Sheldon R. P. and Davidson D. F. (eds) (1989) Phosphate Deposits of the World, 2, Phosphate Rock Resources. Cambridge University Press, 566 p.

    Google Scholar 

  • Oberhänsli H. and Hsü K. J. (1986) Paleocene–Eocene paleoceanography. In: Mesozoic and Cenozoic Oceans (ed. K. J. Hsü). Am. Geophys. Union Geodyn. Ser. 15, 85–100.

    Google Scholar 

  • Ouwehand P. J. (1987) Die Garschella-Formation (Aptian-Cenomanian) der Churfirsten-Alvier Region (Ostschweiz). Mitt. Geol. Inst. ETH Univ. Zürich NF 275, 296 p.

    Google Scholar 

  • Pecora W. T., Hearn B. C. and Milton C. (1962) Origin of spherulitic phosphate nodules in basal Colorado Shale, Bearpaw Mountains, Montana. Geol. Surv. Res. Repts., pp. B30 - B35.

    Google Scholar 

  • Pedersen T. F. and Calvert S. E. (1990) Anoxia versus productivity: what controls the formation of organic carbon-rich sediments and sedimentary rocks? Am. Assoc. Petrol. Geol. Bull. 74, 454–466.

    Google Scholar 

  • Pringle M. S. (1991) Rolling thunder of the Early Cretaceous: Plateau basalts, EMI from the lower mantle, and the origin of the DUPAL anomaly. EOS, Trans. Am. Geophys. Union Suppl. 72/17, 300.

    Google Scholar 

  • Rampino M. R. and Stothers R. B. (1988) Flood basalt volcanism during the past 250 million years. Science 241, 663–668.

    Google Scholar 

  • Raup D. M. and Sepkoski J. J. Jr. (1986) Periodic extinction of families and genera. Science 231, 833–836.

    Google Scholar 

  • Redfield A. C., Ketchum B. H. and Richard F. A. (1963) The influence of organisms on the composition of seawater. In: The Sea (ed. M. N. Hill ). Wiley and Sons, New York, Vol. 2, pp. 26–77.

    Google Scholar 

  • Reimers C. E., Kastner M. and Garrison R. E. (1990) The role of bacterial mats in phosphate mineralization with particular reference to the Monterey Formation. In: Phosphate Deposits of the World, 3, Neogene to Modern Phosphorites (eds. W. C. Burnett and S. R. Riggs ). Cambridge University Press, pp. 300–324.

    Google Scholar 

  • Renard M. (1986) Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Mar. Micropaleontol. 10, 117–164.

    Google Scholar 

  • Riggs S. R. (1987) Model of Tertiary phosphorites on the world’s continental margins. In: Marine Minerals (eds. Telecki P. G. et al.). Kluwer Academic Publishers, Dordrecht, pp. 99–118.

    Google Scholar 

  • Riggs S. R., Snyder S. W., Snyder S. W. and Hine A. C. (1990) Stratigraphic framework for cyclical deposition of Miocene sediments in the Carolina phosphogenic province. In: Phosphate Deposits of the World, 3, Neogene to Modern Phosphorites (eds. W. C. Burnett and S. R. Riggs ). Cambridge University Press, pp. 381–395.

    Google Scholar 

  • Rodriguez S. E. (1989) Phosphorite deposits of Venezuela. In: Notholt A. J. G., Sheldon R. P. and Davidson D. F. (eds) Phosphate Deposits of the World, 2, Phosphate Rock Resources. Cambridge University Press, pp. 137–146.

    Google Scholar 

  • Schianger S. O. and Jenkyns H. C. (1976) Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnbouw. 55, 179–184.

    Google Scholar 

  • Schlanger S. O., Jenkyns H. C. and Premoli-Silva I. (1981) Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth Planet. Sci. Lett. 52, 435–449.

    Google Scholar 

  • Scholle P. A. and Arthur M. A. (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. Am. Assoc. Petrol. Geol. Bull. 64, 67–87.

    Google Scholar 

  • Shackleton N. J. (1987) The carbon isotope record of the Cenozoic: History of organic burial and of oxygen in the ocean and atmosphere. In: Brooks J. and Fleet A. J. (eds), Marine Petroleum Source Rocks. Geol. Soc. Spec. Publ. 26, 423–434.

    Google Scholar 

  • Shackleton N. J., Hall M. A., Boersma A. (1984) Oxygen and carbon isotope data from Leg 74 foraminifers. In: Mit. Repts. DSDP (eds. T. C. Moore, P. D. Rabinowitz, et al. 74, 599–612..

    Google Scholar 

  • Sheldon R. P. (1969) World phosphate resources. Min. Congr. J. (Febr 1969 )

    Google Scholar 

  • Sheldon R. P. (1980) Episodicity of phosphate deposition and deep ocean circulation–a hypothesis. In: Marine Phosphorites–Geochemistry, Occurrence, Genesis (ed. Y. K. Bentor). Soc. Econ. Paleontol Mineral. Spec. Publ. 29, 239–247.

    Google Scholar 

  • Sheldon R. P. (1982) Phosphate rock. Sci. Ani. 246/6, 45–51.

    Google Scholar 

  • Sheridan R. E. (1987) Pulsation tectonics as the control of long-term stratigraphie cycles. Paleoceanography 2/2, 97–118.

    Google Scholar 

  • Sladen C. P. (1983) Trends in Early Cretaceous clay mineralogy in NW Europe. Zitteliana 10, 349–357.

    Google Scholar 

  • Sliter W. V. (1990) Biochronology and biologic characterization of Aptian to Turonian organic-rich sequences. Soc. Econom. Mineral., Res. Confer. “Cretaceous Resources, Events, and Rhythms”, August 20–24, 1990, Denver, Colorado, Abstr. Vol.

    Google Scholar 

  • Stein R. (1991) Accumulation of Organic Carbon in Marine Sediments. Lecture Notes Earth Sci 34, 217 p.

    Google Scholar 

  • Stein R., Rullkötter J. and Welte D. H. (1986) Accumulation of organic-carbon-rich sediments in the late Jurassic and Cretaceous Atlantic Ocean–A synthesis. Chem. Geol. 56, 1–32.

    Google Scholar 

  • Stumm W. (1973) The acceleration of the hydrochemical cycling of phosphorus. Water Res. 7, 131–144.

    Google Scholar 

  • Summerhayes C. P. (1987) Organic-rich Cretaceous sediments from the North Atlantic. In: ’ Marine Petroleum Source Rocks (eds. J. Brooks and A. J. Fleet) Geol. Soc. Spec. Publ. 26, 301–316.

    Google Scholar 

  • Vakhrameev V. A. (1987) Cretaceous paleogeography of the U.S.S.R. Palaeogeogr. Palaeoclimatol. Palaeoecol. 59, 57–67.

    Google Scholar 

  • Varsentov I. M., Sakharove B. A., Rateev M. A. and Choporov D. Y. (1981) Geochemical history of post-Jurassic sedimentation in the Central Northwestern Pacific, northern Hess Rise, DSDP Site 464. In: Mit. Repts. DSDP (eds. J. Thiede, T. L. Vallier. et al.). 62, 805–832.

    Google Scholar 

  • Vincent E. and Berger W. H. (1985) Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis. In: The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present (eds. E. T. Sundquist and W. S. Broecker). Am. Geophys. Union Geophys. Monogr. 32, 455–468.

    Google Scholar 

  • Volk T. (1987) Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779.

    Google Scholar 

  • Weissert H. (1981) The environment of deposition of black shales in the Early Cretaceous: An ongoing controversy. In: The Deep Sea Drilling Project: A Decade of Progress. (eds. J. E. Warme, R. G. Douglas and E. L. Winterer). Soc. Econ. Paleontol. Mineral. Spec. Publ. 32, 547–560.

    Google Scholar 

  • Weissert H. (1989) C-isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the early Cretaceous. Surveys Geophys. 10, 1–61.

    Google Scholar 

  • Weissert H. (1990) Siliciclastics in the Early Cretaceous Tethys and North Atlantic Oceans: Documents of periodic greenhouse climate conditions. Mem. Soc. Geol. Ital. 44, 59–69.

    Google Scholar 

  • Weissert H. and Bréhéret J. G. (1991) A carbonate carbon-isotope record from Aptian-Albian sediments of the Vocontian trough (SE France). Bull. Soc. Géol France 162, 1133–1140.

    Google Scholar 

  • Weissert H. and Channel J. E. T. (1989) Tethyan carbonate carbon isotope stratigraphy across the Jurassic-Cretaceous boundary: An indicator of decelerated global carbon cycling? Paleoceanography 4, 483–494.

    Google Scholar 

  • Weissert H. and Lini A. (1991) Ice age interludes during the time of Cretaceous greenhouse climate? In: Controversies in Modern Geology (eds. D. Müller, J. A. McKenzie and H. Weissert ). Academic Press, London, pp. 173–191.

    Google Scholar 

  • Wilgus C. K., Hastings B. S., Posamentier H., Van Wagoner J., Ross C. A. and Kendall C. G. (eds) (1988) Sea-Level Changes: An Integrated Approach. Soc. Econ. Paleontol. Mineral. Spec. Publ. 42, 407 p.

    Google Scholar 

  • Woodruff F. and Savin S. M. (1985) δ13C values of Miocene Pacific benthic foraminifera: Correlations with sealevel and biological productivity. Geology 13, 119–122.

    Google Scholar 

  • Wyssling G. W. (1986) Der frühkretazische helvetische Schelf in Vorarlberg und im Allgäu–Stratigraphie, Sedimentologie und Paläogeographie. Jb. Geol. Bundesanst. 129,, 161–265.

    Google Scholar 

  • Yeo G. M. (1990) The Blow River phosphorite, northern Yukon (Canada): implications for the origin of Mesozoic marine phosphorites. Int. Assoc. Sedimentol., 13th Int. Congr., Nottingham, Book Paper Abstr., pp 617.

    Google Scholar 

  • Zimmerle W. (1982) Die Phosphorite des norddeutschen Apt und Alb. Geol. Jb. A65, 159–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Föllmi, K.B., Weissert, H., Lini, A. (1993). Nonlinearities in Phosphogenesis and Phosphorus-Carbon Coupling and Their Implications for Global Change. In: Wollast, R., Mackenzie, F.T., Chou, L. (eds) Interactions of C, N, P and S Biogeochemical Cycles and Global Change. NATO ASI Series, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76064-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76064-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76066-2

  • Online ISBN: 978-3-642-76064-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics