Skip to main content

Assembly of the Reovirus Genome

  • Chapter
Reoviruses I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 233/1))

  • 167 Accesses

Abstract

During the early days of molecular virology, the presumed monomolecular nature of their genomes was considered to be one of the primary virtues of viruses. However, in 1969, irrefutable evidence surfaced that reovirus genomes consist not of one, but of ten molecules of double-stranded (ds)RNA (Shatkin et al. 1968). Further, it quickly became apparent that this was not a case of a “headful” mechanism at work, such as appears to operate for influenza virus, where virus particles probably contain random 11-segment collections of the eight actual influenza genome segment species, so that roughly one in 25 virus particles contains at least one of each and is therefore infectious (Lamb and Choppin 1983; Enami et al. 1991). By contrast, the assembly of genome segments to form the reovirus genome is an extraordinarily efficient and precise process because the ratio of virus particles to infectious units in carefully handled reovirus preparations is essentially 1 (1.6 or less) (Spendlove et al. 1970; Larson et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antczak JB, Joklik WK (1992) Reovirus genome segment assortment into progeny genomes studied by the use of monoclonal antibodies directed against reovirus proteins. Virology 187: 760–776

    Article  PubMed  CAS  Google Scholar 

  • Astell C, Silverstein SC, Levin DH, Acs G (1972) Regulation of the reovirus RNA transcriptase by a viral capsomere protein. Virology 48: 648–654

    Article  PubMed  CAS  Google Scholar 

  • Borsa J, Sargent MD, Lievaart PA, Copps TP (1981) Reovirus: evidence for a second step in the intracellular uncoating and transcriptase activation process. Virology 111: 191–200

    Article  PubMed  CAS  Google Scholar 

  • Brown EG, Nibert ML, Fields BN (1983) The L2 gene of reovirus serotype 3 controls the capacity to interfere, accumulate deletions and establish persistent infection. In: Compans RW, Bishop DHL (eds) Double-stranded RNA viruses. Elsevier, New York

    Google Scholar 

  • Chang C-T, Zweerink HJ (1971) Fate of parental reovirus in infected cells. Virology 46: 544–555

    Article  PubMed  CAS  Google Scholar 

  • Chappell JD, Goral MI, Rodgers SE, dePamphilis CW, Dermody TS (1994) Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif. J Virol 69: 750–759

    Google Scholar 

  • Choi AHC, Paul RW, Lee PWK (1990) Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Virology 178: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Cross RK, Fields BN (1976) Use of an aberrant polypeptide as a marker in three-factor crosses: further evidence for independent assortment as the mechanism of recombination between temperature-sensitive mutants of reovirus type 3. Virology 74: 345–362

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Home D, Cashdollar LW, Joklik WK, Lee PWK (1990) Identification of conserved domains in the cell attachment proteins of the three serotypes of reovirus. Virology 174: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Enami M, Sharma G, Benham C, Palese P (1991) An influenza virus containing nine different RNA segments. Virology 185: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Fields BN (1973) Genetic reassortment of reovirus mutants. In: Fox CF (ed) Virus research. Academic, New York

    Google Scholar 

  • Fields BN, Joklik WK (1969) Isolation and preliminary genetic and biochemical characterization of temperature-sensitive mutants of reovirus. Virology 37: 335–342

    Article  PubMed  CAS  Google Scholar 

  • Hazelton PR, Coombs KM (1995) The reovirus mutant tsA279 has temperature-sensitive lesions in the M2 and L2 genes: the M2 gene is associated with decreased viral protein production and blockade in membrane transport. Virology 207: 46–58

    Article  PubMed  CAS  Google Scholar 

  • Joklik WK, Roner MR (1995) What reassorts when reovirus genome segments reassort? J Biol Chem 270: 4181–4184

    Article  PubMed  CAS  Google Scholar 

  • Joklik WK, Roner MR (1996) Molecular recognition in the assembly of the segmented reovirus genome. Progr Nucleic Acids Res Mol Biol 53: 249–281

    Article  CAS  Google Scholar 

  • Kedl R, Schmechel S, Schiff L (1995) Comparative sequence analysis of the reovirus S4 genes from 13 serotype 1 and serotype 3 field isolates. J Virol 69: 552–559

    PubMed  CAS  Google Scholar 

  • Lamb RA, Choppin PW (1983) The gene structure and replication of influenza virus. Annu Rev Biochem 52: 467–506

    Article  PubMed  CAS  Google Scholar 

  • Larson SM, Antczak JB, Joklik WK (1994) Reovirus exists in the form of 13 particle species that differ in their content of protein 6I. Virology 201: 303–311

    Article  PubMed  CAS  Google Scholar 

  • Lucia-Jandris P, Hooper JW, Fields BN (1993) Reovirus M2 gene is associated with chromium release from mouse L cells. J Virol 67: 5339–5345

    PubMed  CAS  Google Scholar 

  • Paul RW, Lee PWK (1987) Glycophorin is the reovirus receptor on human erythrocytes. Virology 159:94–101

    Google Scholar 

  • Paul RW, Lee PWK (1987) Glycophorin is the reovirus receptor on human erythrocytes. Virology 159: 94–101

    Article  PubMed  CAS  Google Scholar 

  • Powell KFH, Harvey JD, Bellamy AR (1984) Reovirus RNA transcriptase: evidence for a conformational change during activation of the core particle. Virology 137: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Roner MR, Sutphin LA, Joklik WK (1990) Reovirus RNA is infectious. Virology 179: 845–852

    Article  PubMed  CAS  Google Scholar 

  • Roner MR, Lin P-N, Nepluev I, Kong L-J, Joklik WK (1995) Identification of signals required for the insertion of heterologous genome segments into the reovirus genome. Proc Natl Acad Sci USA 92: 12362–12366

    Article  PubMed  CAS  Google Scholar 

  • Roner MR, Nepliouev I, Sherry B, Joklik WK (1997) Construction and characterization of a reovirus double is mutant. Proc Natl Acad Sci USA 94: 6826–6830

    Article  PubMed  CAS  Google Scholar 

  • Schuerch AR, Matsuhisa T, Joklik WK (1974) Temperature-sensitive mutants of reovirus. VI. Mutantts447 and ts556 particles that lack either one or two genome RNA segments. Intervirology 3: 36–46

    Article  PubMed  CAS  Google Scholar 

  • Shatkin AJ, LaFiandra AJ (1972) Transcription by infectious subviral particles of reovirus. J Virol 10: 698–707

    PubMed  CAS  Google Scholar 

  • Shatkin AJ, Sipe JD, Loh PC (1968) Separation of 10 reovirus genome segments by polyacrylamide gel electrophoresis. J Virol 2: 986–991

    PubMed  CAS  Google Scholar 

  • Silverstein SC, Astell C, Levin DH, Schonberg M, Acs G (1972) The mechanisms of reovirus uncoating and gene activation in vivo. Virology 47: 797–786

    Article  PubMed  CAS  Google Scholar 

  • Spandidos DA, Graham AF (1975) Complementation between temperature sensitive and deletion mutants of reovirus. J Virol 16: 1444–1453

    PubMed  CAS  Google Scholar 

  • Spendlove RS, McClain ME, Lennette EH (1970) Enhancement of reovirus infectivity by extracellular removal or alteration of the virus capsid by proteolytic enzymes. J Gen Virol 8: 83–93

    Article  PubMed  CAS  Google Scholar 

  • Strong JF, Tang D, Lee PWK (1993) Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology 197: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Sturzenbecker LJ, Nibert M, Furlong D, Fields BN (1987) Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J Virol 61: 2351–2361

    PubMed  CAS  Google Scholar 

  • Tyler KL, Squire MKT, Brown AL, Pike B, Willis D, Oberhaus SM, Dennody TS, Cohen JJ (1996) Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: role of the S1 and M2 genes. J Virol 70: 7984–7951

    PubMed  CAS  Google Scholar 

  • Weiner HL, Drayna D, Averill DR Jr, Fields BN (1977) Molecular basis of reovirus virulence: role of the S1 gene. Proc Natl Acad Sci USA 74: 5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Greene MI, Fields BN (1980) Delayed hypersensitivity in mice infected with reovirus. I. Identification of host and viral gene products responsible for the immune response. J Immunol 125: 278–282

    Google Scholar 

  • Wiener JR, Joklik WK (1989) The sequences of the reovirus serotype I, 2 and 3 LI genome segments and analysis of the mode of divergence of the reovirus serotypes. Virology 169: 194–203

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joklik, W.K. (1998). Assembly of the Reovirus Genome. In: Tyler, K.L., Oldstone, M.B.A. (eds) Reoviruses I. Current Topics in Microbiology and Immunology, vol 233/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72092-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72092-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72094-9

  • Online ISBN: 978-3-642-72092-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics