Skip to main content

Skeletal Muscle Adaptation in Response to Chronic Stimulation

  • Conference paper

Abstract

Chronic stimulation has become an attractive model for studying activity-induced adaptations and for investigating the role of impulse activity upon phenotype expression in skeletal muscle (for reviews see Jolesz and Sréter 1981; Pette 1984; Pette and Vrbová 1985; Salmons and Henriksson 1981).

This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 138 “Biologische Grenzflächen und Spezifität” and Sonderforschungsbereich 156 “Mechanismen zellulärer Kommunikation

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown MD, Cotter MA, Hudlická O, Vrbová G (1976) The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch 361: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Brown WE, Salmons S, Whalen RG (1983) The sequential replacement of myosin subunit isoforms during muscle type transformation induced by long term electrical stimulation. J Biol Chem 258: 14686–14692

    PubMed  CAS  Google Scholar 

  • Buchegger A, Nemeth PM, Pette D, Reichmann H (1984) Effects of chronic stimulation on the metabolic heterogeneity of the fibre population in rabbit tibialis anterior muscle. J Physiol (Lond) 350: 109–119

    CAS  Google Scholar 

  • Düsterhöft S, Pette D (1985) Changes in myosin light chains by chronic stimulation of chick myotubes in culture. J Physiol (Lond) 361: 33P

    Google Scholar 

  • Eisenberg BR, Salmons S (1981) The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. Cell Tissue Res 220: 449–471

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg BR, Brown JMC, Salmons S (1984) Restoration of fast muscle characteristics following cessation of chronic stimulation. Cell Tissue Res 238: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Heilig A, Pette D (1980) Changes induced in the enzyme activity pattern by electrical stimulation of fast-twitch muscle. In: Pette D (ed) Plasticity of muscle. de Gruyter, Berlin, pp 409–420

    Google Scholar 

  • Heilig A, Pette D (1983) Changes in transcriptional activity of chronically stimulated fast twitch muscle. FEBS Lett 151: 211–214

    Article  PubMed  CAS  Google Scholar 

  • Heilig A, Seedorf U, Pette D (1986) Appearance of type-I-protein and its mRNA in rabbit fast-twitch muscle as induced by chronic stimulation. J Muscle Res Cell Motil 7: 59

    Article  Google Scholar 

  • Heilmann C, Pette D (1979) Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation. Eur J Biochem 93: 437–446

    Article  PubMed  CAS  Google Scholar 

  • Heilmann C, Müller W, Pette D (1981) Correlation between ultrastructural and functional changes in sarcoplasmic reticulum during chronic stimulation of fast muscle. J Membr Biol 59: 143–149

    Article  CAS  Google Scholar 

  • Hennig R, Lømo T (1985) Firing patterns of motor units in normal rats. Nature (Lond) 314: 164–166

    Article  CAS  Google Scholar 

  • Hudlická O, Brown M, Cotter M, Smith M, Vrbová G (1977) The effect of long-term stimulation of fast muscles on their blood flow, metabolism and ability to withstand fatigue. Pflügers Arch 369: 141–149

    Article  PubMed  Google Scholar 

  • Hudlická O, Tyler KR, Aitman T (1980) The effect of long-term electrical stimulation on fuel uptake and performance in fast skeletal muscles. In: Pette D (ed) Plasticity of muscle. de Gruyter, Berlin, pp 401–408

    Google Scholar 

  • Hudlická O, Dodd L, Renkin EM, Gray SD (1982a) Early changes in fiber profile and capillary density in long-term stimulated muscles. Am J Physiol 243: H528–H535

    Google Scholar 

  • Hudlická O, Tyler KR, Srihari T, Heilig A, Pette D (1982b) The effect of different patterns of long-term stimulation on contractile properties and myosin light chains in rabbit fast muscles. Pflügers Arch 393: 164–170

    Article  PubMed  Google Scholar 

  • Hudlická O, Aitman T, Heilig A, Leberer E, Tyler KR, Pette D (1984) Effects of different patterns of long-term stimulation on blood flow, fuel uptake and enzyme activities in rabbit fast skeletal muscles. Pflügers Arch 402: 306–311

    Article  PubMed  Google Scholar 

  • Jolesz F, Sréter FA (1981) Development, innervation, and activity pattern induced changes in skeletal muscle. Ann Rev Physiol 43: 531–552

    Article  CAS  Google Scholar 

  • Kirschbaum BJ, Seedorf U, Pette D (1986) Changes of the translational apparatus in chronically stimulated rabbit fast-twitch muscle. J Muscle Res Cell Motil 7: 60

    Google Scholar 

  • Klug G, Wiehrer W, Reichmann H, Leberer E, Pette D (1983) Relationships between early alterations in parvalbumins, sarcoplasmic reticulum and metabolic enzymes in chronically stimulated fast twitch muscle. Pflügers Arch 399: 280–284

    Article  PubMed  CAS  Google Scholar 

  • Leberer E, Seedorf U, Klug G, Pette D (1985) Parvalbumin levels and in vitro translation of its mRNA in chronically stimulated rabbit muscle. J Muscle Res Cell Motil 6: 84

    Google Scholar 

  • Lømo T, Westgaard RH, Dahl HA (1974) Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc R Soc Lond [Biol] 187: 99–103

    Article  Google Scholar 

  • Lømo T, Westgaard RH, Engebretsen L (1980) Different stimulation patterns affect contractile properties of denervated rat soleus muscles. In: Pette D (ed) Plasticity of muscle. de Gruyter, Berlin, pp 297–309

    Google Scholar 

  • Lømo T, Gundersen K, Hennig R, Westgaard R (1985) The role of impulse patterns in maintaining and regulating contractile properties in intact and chronically denervated and stimulated rat skeletal muscles. In: Eccles JC, Dimitrijevic MR (eds) Recent achievements in restorative neurology. 1 Upper motor neuron functions and dysfunctions. Karger, Basel, pp 249–262

    Google Scholar 

  • Mabuchi K, Szvetko D, Pintér K, Sréter FA (1982) Type IIB to IIA fiber transformation in intermittently stimulated rabbit muscles. Am J Physiol 242: C373–C381

    Google Scholar 

  • Maier A, Gambke B, Pette D (1986) Degeneration-regeneration as a mechanism contributing to the fast to slow conversion of chronically stimulated fast-twitch muscle. Cell Tissue Res 244: 635–643

    Article  PubMed  CAS  Google Scholar 

  • Nemeth PM (1982) Electrical stimulation of denervated muscle prevents decreases in oxidative enzymes. Muscle Nerve 5: 134–139

    Article  PubMed  CAS  Google Scholar 

  • Nix WA (1986) Maintenance of muscle integrity. In: Dimitrijevic M, Kakulas BA, Vrbová G (eds) Recent achievements in restorative neurology, vol 2. Karger, Basel, pp 332–340

    Google Scholar 

  • Nix WA, Reichmann H, Schröder JM (1985) Influence of direct low frequency stimulation on contractile properties of denervated fast-twitch muscle of the rabbit. Pflügers Arch 405: 244–249

    Article  PubMed  Google Scholar 

  • Peckham PH, Mortimer JT, von der Meulen JP (1973) Physiologic and metabolic changes in white muscle of cat following induced exercise. Brain Res 50: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Pette D (1984) Activity-induced fast to slow transitions in mammalian muscle. Med Sci Sports Exerc 16: 517–528

    PubMed  CAS  Google Scholar 

  • Pette D (1986) Motoneurone activity and phenotype expression of muscle fibers. In: Dimitrijevic M, Kakulas BA, Vrbová G (eds) Recent achievements in restorative neurology, vol 2. Karger, Basel, pp 265–275

    Google Scholar 

  • Pette D, Vrbová G (1985) Invited review: Neural control of phenotype expression in mammalian muscle fibers. Muscle Nerve 8: 676–689

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Staudte HW, Vrbová G (1972) Physiological and biochemical changes induced by long-term stimulation of fast muscle. Naturwissenschaften 59: 469–470

    Article  Google Scholar 

  • Pette D, Smith ME, Staudte HW, Vrbová G (1973) Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflügers Arch 338: 257–272

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Ramirez BU, Müller W, Simon R, Exner GU, Hildebrand R (1975) Influence of intermittent long-term stimulation on contractile, histochemical and metabolic properties of fibre populations in fast and slow rabbit muscles. Pflügers Arch 361: 1–7

    Article  Google Scholar 

  • Pette D, Müller W, Leisner E, Vrbová G (1976) Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit. Pflügers Arch 364: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Heilig A, Klug G, Reichmann H, Seedorf U, Wiehrer W (1984) Alterations in phenotype expression of muscle by chronic nerve stimulation. In: Strohman RC, Wolf S (eds) Gene expression in muscle. Plenum, New York, pp 169–178

    Google Scholar 

  • Pluskai MG, Sréter FA (1983) Correlation between protein phenotype and gene expression in adult rabbit fast twitch muscles undergoing a fast to slow fiber transformation in response to electrical stimulation in vivo. Biochem Biophys Res Commun 113: 325–331

    Google Scholar 

  • Reichmann H, Nix WA (1985) Changes of energy metabolism, myosin light chain composition, lactate dehydrogenase isozyme pattern and fibre type distribution of denervated fast-twitch muscle from rabbit after low frequency stimulation. Pflügers Arch 405: 244–249

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D (1985) Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch 404: 1–9

    Article  Google Scholar 

  • Roy RK, Mabuchi K, Sarkar S, Mis C, Sréter FA (1979) Changes in tropomyosin subunit pattern in chronic electrically stimulated rabbit fast muscles. Biochem Biophys Res Commun 89: 181–187

    Article  PubMed  CAS  Google Scholar 

  • Salmons S, Henriksson J (1981) The adaptive response of skeletal muscle to increased use. Muscle Nerve 4: 94–105

    Article  PubMed  CAS  Google Scholar 

  • Salmons S, Sréter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature (Lond) 263: 30–34

    Article  CAS  Google Scholar 

  • Salmons S, Vrbová G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 210: 535–549

    Google Scholar 

  • Salmons S, Gale DR, Sréter FA (1978) Ultrastructural aspects of the transformation of muscle fibre type by long term stimulation: changes in Z discs and mitochondria. J Anat 127: 17–31

    PubMed  CAS  Google Scholar 

  • Sarzala MG, Szymanska G, Wiehrer W, Pette D (1982) Effects of chronic stimulation at low frequency on the lipid phase of sarcoplasmic reticulum in rabbit fast-twitch muscle. Eur J Biochem 123: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Schmitt T, Pette D (1985) Increased mitochondrial creatine kinase in chronically stimulated fast-twitch rabbit muscle. FEBS Lett 188: 341–344

    Article  PubMed  CAS  Google Scholar 

  • Seedorf K, Seedorf U, Pette D (1983) Coordinate expression of alkali and DTNB myosin light chains during transformation of rabbit fast muscle by chronic stimulation. FEBS Lett 158: 321–324

    Article  PubMed  CAS  Google Scholar 

  • Seedorf U, Leberer E, Pette D (1985) In vitro translation of mRNAs coding for citrate synthetase and lactate dehydrogenase isozyme 5 in chronically stimulated rabbit muscle. J Muscle Res Cell Motil 6: 85–86

    Google Scholar 

  • Sréter FA, Gergely J, Salmons S, Romanul FCA (1973) Synthesis by fast muscle of myosin characteristic of slow muscle in response to long term stimulation. Nature New Biol (Lond) 241: 17–19

    Google Scholar 

  • Sréter FA, Elzinga M, Mabuchi K, Salmons S, Luff AR (1975) The N-methylhistidine content of myosin in stimulated and cross-reinnervated skeletal muscles of the rabbit. FEBS Lett 57: 107–111

    Article  PubMed  Google Scholar 

  • Sréter FA, Pinter K, Jolesz F, Mabuchi K (1982) Fast to slow transformation of fast muscles in response to long-term phasic stimulation. Exp Neurol 75: 95–102

    Article  PubMed  Google Scholar 

  • Srihari T, Pette D (1981) Myosin light chains in normal and electrostimulated cultures of embryonic chicken breast muscle. FEBS Lett 123: 312–314

    Article  PubMed  CAS  Google Scholar 

  • Vrbová G (1963) The effect of motoneurone activity on the speed of contraction of striated muscle. J Physiol (Lond) 169: 513–526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pette, D. (1986). Skeletal Muscle Adaptation in Response to Chronic Stimulation. In: Nix, W.A., Vrbová, G. (eds) Electrical Stimulation and Neuromuscular Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71337-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71337-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71339-2

  • Online ISBN: 978-3-642-71337-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics