Skip to main content

Periodicity in Epidemiological Models

  • Chapter
Applied Mathematical Ecology

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 18))

Abstract

Various epidemiological mechanisms have been shown to lead to periodic solutions. The most direct way in which periodicity arises is through extrinsic forcing by a parameter such as the contact rate, but periodicity can also arise autonomously. Cyclic models of SIRS or SEIRS type can have periodic solutions if there is a large time delay in the removed class. Epidemiological models with nonlinear incidence of certain general forms can have periodic solutions. Some models with variable population size and disease-related deaths have periodic solutions; most of these are host-parasite models where the parasite lifetime is much shorter than that of the host. Recently, periodic solutions have been found numerically in age structured models with cross immunity between two viral strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.M. (1982) Directly transmitted viral and bacterial infections of man. In: Anderson, R.M. (ed.) Population Dynamics of Infectious Diseases. Theory and Applications. Chapman and Hall, New York, pp. 1–37

    Google Scholar 

  • Anderson, R.M., Jackson, H.C., May, R.M., Smith, A.D.M. (1981) Populations dynamics of fox rabies in Europe. Nature 289, 765–777

    Article  Google Scholar 

  • Anderson, R.M., May, R.M. (1979) Population biology of infectious diseases I. Nature 280, 361–367

    Article  Google Scholar 

  • Anderson, R.M., May, R.M. (1981) The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. Roy. Soc. London B291, 451–524

    Google Scholar 

  • Anderson, R.M., May, R.M. (1982) Directly transmitted infectious diseases: control by vaccination. Science 215, 1053–1060

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, R.M., May, R.M. (1983) Vaccination against rubella and measles: quantitative investigations-of different policies. J. Hyg. Camb. 90, 259–325

    Article  Google Scholar 

  • Andreasen, V. (1987) Dynamical behaviour of epidemiological models. Preprint Aron, J.L., Schwartz, I.B. (1984a) Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 110, 665–679

    Google Scholar 

  • Aron, J.L., Schwartz, I.B. (1984b) Some new directions for research in epidemic models, IMA J. Math. Appl. Med. Biol. 267–276

    Google Scholar 

  • Aronsson, G., Mellander, I. (1980) A deterministic model in biomathematics: asymptotic behavior and threshold conditions, Math. Biosci. 49, 207–222

    Article  MATH  MathSciNet  Google Scholar 

  • Bailey, N.T.J. (1975) The Mathematical Theory of Infectious Diseases, Second Edition, Hafner, New York

    MATH  Google Scholar 

  • Bartlett, M.S. (1956) Deterministic and stochastic models for recurrent epidemics, Proc. Third Berkeley Symp. Math. Stat. Prob. 4, 81–109

    MathSciNet  Google Scholar 

  • Bartlett, M.S. (1960) Stochastic Population Models in Ecology and Epidemiology, Methuen, London

    MATH  Google Scholar 

  • Boland, W.R., Powers, M.W. (1977) A numerical technique for obtaining approximate solutions of certain functional equations arising in the theory of epidemics, Math. Biosci. 33, 297–319

    Article  MATH  MathSciNet  Google Scholar 

  • Busenberg, S.N., Cooke, K.L. (1978a) Periodic solutions of delay differential equations arising in some models of epidemics, in Proceedings of the Applied Nonlinear Analysis Conference, Univ. of Texas, Arlington, Academic Press, New York

    Google Scholar 

  • Busenberg, S.N., Cooke, K.L. (1978b) Periodic solutions of a periodic nonlinear delay differential equation, SIAM J. on Applied Math. 35, 704–721

    Article  MATH  MathSciNet  Google Scholar 

  • Busenberg, S.N., Cooke, K.L. (1980) The effect of integral conditions in certain equations modeling epidemics and population growth, J. Math. Biol. 10, 13–32

    Article  MATH  MathSciNet  Google Scholar 

  • Capasso, V., Serio, G. (1978) A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci. 42, 43–61

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu, W.M. (1988) Cross-immunity in the dynamics of homogeneous and heterogeneous populations. In Hallam, T.G., Gross, L. and Levin, S.A. (eds.) Mathematical Ecology, World Scientific Publishing Co., Singapore, 303–316

    Google Scholar 

  • Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu, W.M. (1989) Epidemiological models with age-structure and proportionate mixing, J. Math. Biology (to appear) Cooke, K.L. (1982) Models for endemic infections with asymptomatic cases: one group, Math. Modelling 3, 1–15

    MathSciNet  Google Scholar 

  • Cooke, K., Kaplan, J. (1976) A periodicity threshold theorem for epidemics and population growth, Math. Biosci. 31, 87–104

    Article  MATH  MathSciNet  Google Scholar 

  • Cunningham, J. (1979) A deterministic model for measles, Z. Naturforsch 34c, 647–648

    Google Scholar 

  • Diekmann, O., Montijn, R. (1982) Prelude to Hopf bifurcation in an epidemic model: analysis of the characteristic equation associated with a nonlinear Volterra integral equation, J. Math. Biol. 14, 117–127

    Article  MATH  MathSciNet  Google Scholar 

  • Dietz, K. (1975) Transmission and control of arbovirus diseases, in Epidemiology, SIMS 1974 Utah Conference Proceedings, SIAM, Philadelphia, pp. 104–121

    Google Scholar 

  • Dietz, K. (1976) The incidence of infectious diseases under the influence of season fluctuations, in Mathematical Models in Medicine, Lecture Notes in Biomathematics, No. 11, Springer-Verlag, New York, pp. 1–15

    Google Scholar 

  • Dietz, K. (1981) The evaluation of rubella vaccination strategies. In: Hiorns, R.W., Cooke. D. (eds.) The Mathematical Theory of the Dynamics of Biological Populations, vol. II. Academic Press, London, pp. 81–87

    Google Scholar 

  • Dietz, K., Schenzle, D. (1985a) Mathematical models for infectious disease statistics. In: Atikinson, A.C., Fienberg, S.E. (eds.) A Celebration of Statistics. Springer-Verlag, New York, pp. 167–204

    Chapter  Google Scholar 

  • Dietz, K., Schenzle, D. (1985b) Proportionate mixing models for age-dependent infection transmission, J. Math. Biol. 22, 117–120

    Article  MATH  MathSciNet  Google Scholar 

  • El-Doma, M. (1987) Analysis of nonlinear integro-difTerential equations arising in age-dependent epidemic models, Nonlinear Anal. TMA 11, 913–937

    Article  MATH  MathSciNet  Google Scholar 

  • Enderle, J.D. (1980) A stochastic communicable disease model with age-specific states and applications to measles, Ph.D. dissertation, Rensselaer Polytechnic Institute

    Google Scholar 

  • Fine, P.E.M., Clarkson, J.A. (1982) Measles in England and Wales. I. An analysis of factors underlying seasonal patterns, Int. J. Epidem. 11, 5–14

    Article  Google Scholar 

  • Fine, P.E.M., Clarkson, J.A. (1983) Measles in England and Wales. III. Assessing published predictions of the impact of vaccination on incidence, Int. J. Epidem. 12, 332–339

    Article  Google Scholar 

  • Gabriel, J.P., Hanisch, H., Hirsch, W.M. (1981) Dynamic equilibria of helminthic infections. In: Chapman, D.G., Gallucci, V.F. (eds.) Quantitative Population Dynamics. Intern. Cooperative Publ. House, Maryland, Stat. Ecology Series 13, 83–104

    Google Scholar 

  • Gani, J. (1978) Some problems in epidemic theory, J. Roy. Statist. Soc. Ser. A140, 323–347

    Article  MathSciNet  Google Scholar 

  • Green, D. (1978) Self-oscillations for epidemic models, Math. Biosci. 38, 91–111

    Article  MATH  MathSciNet  Google Scholar 

  • Gripenberg, G. (1980) Periodic solutions of an epidemic model, J. Math. Biol. 10, 271–280

    Article  MATH  MathSciNet  Google Scholar 

  • Grossman, Z. (1980) Oscillatory phenomena in a model of infectious diseases, Theor. Pop. Biol. 18, 204–243

    Article  MATH  MathSciNet  Google Scholar 

  • Grossman, Z., Gumowski, I., Dietz, K. (1977) The incidence of infectious diseases under the influence of seasonal fluctuations-analytic approach, in Nonlinear Systems and Applications to Life Sciences, Academic Press, New York, pp. 525–546

    Google Scholar 

  • Hethcote, H.W. (1973) Asymptotic behavior in a deterministic epidemic model, Bull. Math. Biology 35, 607–614

    MATH  Google Scholar 

  • Hethcote, H.W. (1976) Qualitative analysis for communicable disease models, Math. Biosci. 28,335–356

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., (1983) Measles and rubella in the United States, Am. J. Epidemiol. 117, 2–13

    Google Scholar 

  • Hethcote, H.W. (1986) Choosing a strategy for rubella vaccination, in Proceedings of the Third International Colloquium on Theoretical Biology and Medicine: Models in Epidemiology, Fontevraud, France, September

    Google Scholar 

  • Hethcote, H.W. (1989) Three basic epidemiological models. In: Levin, S.A., Hallam, T.G. and Gross, L. (eds.) Applied Mathematical Ecology, Biomathematics vol. 18, Springer-Verlag, Berlin, Heidelberg, New York, 119–144

    Google Scholar 

  • Hethcote, H.W., Lewis, M.A., van den Driessche, P. (1989) An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol. 27, 49–64

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., Stech, H.W., van den Driessche, P. (1981a) Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40, 1–9

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., Stech, H.W., van den Driessche, P. (1981b) Stability analysis for models of diseases without immunity. J. Math. Biology 13, 185–198

    Article  MATH  Google Scholar 

  • Hethcote, H.W., Stech, H.W., van den Driessche, P. (1981c) Periodicity and stability in epidemic models: a survey, In: Busenberg, S., Cooke, K.L. (eds.) Differential Equations and Applications in Ecology, Epidemics and Populations Problems. Academic Press, New York, pp. 65–82

    Google Scholar 

  • Hethcote, H.W., Tudor, D.W. (1980) Integral equation models for endemic infectious diseases, J. Math. Biol. 9, 37–47

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., Van Ark, J.W. (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs, Math. Biosci. 84, 85–118

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., Yorke, J.A. (1984) Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics, vol. 56. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hirsch, M.W. (1984) The differential equations approach to dynamical systems, Bull. Amer. Math. Soc. 11, 1–64

    Article  MATH  MathSciNet  Google Scholar 

  • Hoppensteadt, F. (1975) Mathematical Theories of Populations: Demographics, Genetics and Epidemics, SIAM, Philadelphia

    Google Scholar 

  • Hoppensteadt, F., Waltman, P. (1971) A problem in the theory of epidemics II, Math. Biosci. 12,133–145

    Article  MATH  MathSciNet  Google Scholar 

  • Kermack, W.O., Mckendrick, A.G. (1927) A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. AU5, 700–721

    Google Scholar 

  • Knox, E.G. (1980) Strategy for rubella vaccination, Int. J. Epidemiol. 9, 13–23

    Article  Google Scholar 

  • Lajmanovich, A., Yorke, J.A. (1976) A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28, 221–236

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.M. (1987) Dynamics of epidemiological models-recurrent outbreaks in autonomous systems, Ph.D. Thesis. Cornell University

    Google Scholar 

  • Liu, W.M., Levin, S.A., Iwasa, Y. (1986) Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol. 23, 187–204

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.M., Hethcote, H.W., Levin, S.A. (1987) Dynamical behavior of epidemiological models with nonlinear incidence rates. 25, 359–380

    MATH  MathSciNet  Google Scholar 

  • London, W.P., Yorke, J.A. (1973) Recurrent outbreaks of measles, chickenpox and mumps, I, Am. J. Epid. 98, 453–468

    Google Scholar 

  • Longini, Jr., I.M., Ackerman, E., Elveback, L.R. (1978) An optimization model for influenza A epidemics, Math. Biosci. 38, 141–157

    Article  Google Scholar 

  • May, R.M., Anderson, R.M. (1978) Regulation and stability of hostparasite population interactions. II. Destabilizing processes, J. Animal Ecology 47, 249–267

    Article  Google Scholar 

  • May, R.M., Anderson, R.M. (1979) Population biology of infectious diseases II, Nature 280, 455–461

    Article  Google Scholar 

  • Mena, J. (1988) Periodicity and stability in epidemiological models with disease-related deaths, Ph.D. Thesis in Mathematics, University of Iowa

    Google Scholar 

  • Mosevich, J. (1975) A numerical method for approximating solutions to the functional equation arising in the epidemic model of Hoppensteadt and Waltman, Math. Biosci. 24, 333–344

    Article  MATH  MathSciNet  Google Scholar 

  • Nussbaum, R. (1977) Periodic solutions of some integral equations from the theory of epidemics, in Nonlinear Systems and Applications to Life Sciences. Academic Press, New York, pp. 235–255

    Google Scholar 

  • Nussbaum, R. (1978) A periodicity threshold theorem for some nonlinear integral equations, SIAM J. Math. Anal. 9, 356–376

    Article  MATH  MathSciNet  Google Scholar 

  • Ross, R. (1916) An application of the theory of probabilities to the study of a priori pathometry, Part I, Proc. Roy. Soc. A92, 204–230

    Google Scholar 

  • Ross, R., Hudson, H.P. (1917) An application of the theory of probabilities to the study of a priori pathometry-Part III, Proc. Roy. Soc. A93, 225–240

    Google Scholar 

  • Schaffer, W.M. (1985) Can nonlinear dynamics help us infer mechanisms in ecology and epidemiology?, IMA J. Math. Appl. Biol. Med. 2, 221–252

    Article  MATH  MathSciNet  Google Scholar 

  • Schaffer, W.M., Kot, M. (1985) Nearly one dimensional dynamics in an epidemic, J. Theor. Biol. 112, 403–427

    Article  MathSciNet  Google Scholar 

  • Schenzle, D. (1984) An age structured model of pre and post-vaccination measles transmission, IMAJ. Math. Appl. Biol. Med. 1, 169–191

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartz, I.B. (1983) Estimating regions of existence of unstable periodic orbits using computer-based techniques, SIAM J. Num. Anal. 20, 106–120

    Article  MATH  Google Scholar 

  • Schwartz, I.B. (1985) Multiple recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models, J. Math. Biol. 21, 347–361

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartz, I.B. (1988) Nonlinear dynamics of seasonally driven epidemic models, Preprint

    Google Scholar 

  • Schwartz, I.B., Smith, H.L. (1983) Infinite subharmonic bifurcations in an SEIR model, J. Math. Biol.18, 233–253

    Article  MATH  MathSciNet  Google Scholar 

  • Severo, N.C. (1969) Generalizations of some stochastic epidemic models, Math. Biosci. 4, 395–402

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, H.L. (1977) On periodic solutions of a delay integral equation modeling epidemics, J. Math. Biol. 4, 69–80

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, H.L. (1978) Periodic solutions for a class of epidemic equations, J. Math. Anal, and Applic. 64, 467–479

    Article  MATH  Google Scholar 

  • Smith, H.L. (1979) Periodic solutions for an epidemic model with a threshold, Rocky Mountain J. of Math. 9, 131–142

    Article  MATH  Google Scholar 

  • Smith, H.L. (1983) Subharmonic bifurcation in an SIR epidemic model, J. Math. Biology 17, 163–177

    Article  MATH  Google Scholar 

  • Smith, H.L. (1983) Multiple stable subharmonics for a periodic epidemic model, J. Math. Biology 17, 179–190

    Article  MATH  Google Scholar 

  • Smith, H.L. (1983) Hopf bifurcation in a system of functional equations modeling the spread of an infectious disease, SIAM J. Appi. Math. 43, 370–385

    Article  MATH  Google Scholar 

  • Smith, H.L. (1986) Cooperative systems of differential equations with concave nonlinearities, J. Nonlin. Anal. T.M.A. 10, 1037–1052

    Article  MATH  Google Scholar 

  • Stech, H.W., Williams, M. (1981) Stability for a class of cyclic epidemic models with delay, J. Math. Biol. 11, 95–103

    Article  MATH  MathSciNet  Google Scholar 

  • Stirzaker, D.R. (1975) A perturbation method for the stochastic recurrent epidemic, J. Inst. Maths Applies 15, 135–160

    Article  MATH  MathSciNet  Google Scholar 

  • Takens, F. (1981) Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence. In: Rand, D.A., Young, L.S. (eds.) Warwick, 1980, Springer-Verlag, New York, pp. 366–381

    Google Scholar 

  • Tudor, D.W. (1985) An age dependent epidemic model with application to measles, Math. Biosci. 73, 131–147

    Article  MATH  MathSciNet  Google Scholar 

  • van den Driessche, P. (1981) An SIRS model with constant temporary immunity and constant births and deaths. In: Freedman, H.I., Strobeck, D. (eds.) Population Biology. Lecture Notes in Biomathematics, vol. 52. Springer, Berlin Heidelberg New York, pp. 433–440

    Google Scholar 

  • Wang, F.J.S. (1978) Asymptotic behavior of some deterministic epidemic models, SIAM J. Math. Anal. 9, 529–534

    Article  MATH  MathSciNet  Google Scholar 

  • Wilson, E.B., Worcester, J. (1945) The law of mass action in epidemiology, Proc. N.A.S. 31, 24–34

    Article  MathSciNet  Google Scholar 

  • Wilson, E.B., Worcester, J. (1945) The law of mass action in epidemiology, II., Proc. N.A.S. 31,109–116

    Article  MathSciNet  Google Scholar 

  • Yorke, J.A., London, W.P. (1973) Recurrent outbreaks of measles, chickenpox and mumps II, Am. J. Epid. 98, 469–482

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hethcote, H.W., Levin, S.A. (1989). Periodicity in Epidemiological Models. In: Levin, S.A., Hallam, T.G., Gross, L.J. (eds) Applied Mathematical Ecology. Biomathematics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61317-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61317-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64789-5

  • Online ISBN: 978-3-642-61317-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics