Skip to main content

Part of the book series: Current Topics in Microbiology 213/I and Immunology ((CT MICROBIOLOGY,volume 213/1))

Abstract

The formation of capillaries from preexisting blood vessels (angiogenesis) occurs in a variety of normal and pathological conditions, including organ development, would healing and tumor growth. Angiogenesis requires a strict temporal modulation of opposing cell functions: cell proliferation and migration, and extracellular matrix (ECM) degradation in the initial steps; arrest of cell proliferation and migration, ECM deposition and morphogenesis in the final steps. In the initial steps of angiogenesis, microvascular endothelial cells behave similarly to invasive tumor cells, as they cross basement membranes and interstitial stroma and invade adjacent tissues. However, unlike tumor invasion, the invasive process that occurs during angiogenesis is spatially and temporally restricted. As for tumor cell invasion, proteinases are of fundamental importance for the degradation of the perivascular ECM and endothelial cell invasion into the tissue to be vascularized. A number of studies have shown that, among the proteinases involved in angiogenesis, components of the plasminogen activator (PA)-plasmin system play a central role in endothelial cell migration and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessandri G, Rajn K, Gullino PM (1983) Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res 43: 1790–1797.

    PubMed  CAS  Google Scholar 

  • Andrade-Gordon P, Strickland S (1986) Interaction of heparin with plasminogen activators and plasminogen: effects on the activation of plasminogen. Biochemistry 25: 4033–4040.

    Article  PubMed  CAS  Google Scholar 

  • Anichini E, Fibbi G, Pucci M, Caldini R, Chevanne M, Del Rosso M (1994) Production of second messengers following chemotactic and mitogenic urokinase-receptor interaction in human fibroblasts and mouse fibroblasts transfected with human urokinase receptor. Exp Cell Res 213: 438–448.

    Article  PubMed  CAS  Google Scholar 

  • Appella E, Robinson EA, Ullrich SJ, Stoppelli MP, Corti A, Cassani G, Blasi F (1987) The receptor binding sequence of urokinase. A biological function for the growth factor module of proteases. J Biol Chem 262: 4437–4440.

    CAS  Google Scholar 

  • Astedt B, Lecander I, Brodin T, Ludblad A, Low K (1985) Purification of a specific placental plasminogen activator inhibitor by monoclonal antibody and its complex formation with plasminogen activator. Thromb Haemost 53: 122–125.

    PubMed  CAS  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53–65.

    Article  PubMed  CAS  Google Scholar 

  • Bacharach E, Itin A, Keshet E (1992) In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis. Proc Natl Acad Sci USA 89: 10686–10690.

    Article  PubMed  CAS  Google Scholar 

  • Baker JB, Low DA, Simmer RL, Cunningham DD (1980) Protease-nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells. Cell 21: 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Barnathan ES, Kuo A, Kariko K, Rosenfeld L, Murray SC, Behrendt N, Rönne E, Weiner D, Henkin J, Cines DB (1990a) Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA. Blood 76: 1795–1806.

    PubMed  CAS  Google Scholar 

  • Barnathan ES, Kuo A, Rosenfeld L, Kariko K, Leski M, Robbiati F, Nolli ML, Henkin J, Cines DB (1990b) Interaction of single-chain urokinase-type plasminogen activator with human endothelial cells. J Biol Chem 265: 2865–2872.

    PubMed  CAS  Google Scholar 

  • Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavski I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28: 1737–1743.

    Article  PubMed  CAS  Google Scholar 

  • Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59: 115–165.

    Article  PubMed  CAS  Google Scholar 

  • Behrendt N, Ronne E, Ploug M, Petri T, Lober D, Nielsen LS, Schleuning WD, Blasi F, Appella E, Dan0 K (1990) The human receptor for urokinase plasminogen activator. NH2-terminal sequence and glycosylation variants. J Biol Chem 265: 6453–6460.

    PubMed  CAS  Google Scholar 

  • Bikfalvi A, Klein S, Pintucci G, Quarto N, Mignatti P, Rif kin DB (1995) Differential modulation of cell phenotype by different molecular weight forms of basic fibroblast growth factor: possible intracellular signaling by the high molecular weight forms. J Cell Biol 129: 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Blei F, Wilson EL, Mignatti P, Rif kin DB (1993) Mechanism of action of angiostatic steroids: suppression of plasminogen activator activity via stimulation of plasminogen activator inhibitor synthesis. J Cell Physiol 155: 568–578.

    Article  PubMed  CAS  Google Scholar 

  • Bowersox JC, Sorgente N (1982) Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res 42: 2547–2551.

    PubMed  CAS  Google Scholar 

  • Busso N, Masur SK, Lazega D, Waxman S, Ossowski L (1994) Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J Cell Biol 126: 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Bussolino F, Di Renzo MF, Ziehe M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119: 629–641.

    Article  PubMed  CAS  Google Scholar 

  • Bykowska K, Levin EG, Rijken DC, Loskutoff DJ, Collen D (1982) Characterization of a plasminogen activator secreted by cultured bovine aortic endothelial cells. Biochim Biophys Acta 703: 113–115.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, DeVos R, van den Oord JJ, Collen D, Mulligan RC (1994) Physiological consequences of loss of plasminogen activator gene function in mice. Nature 386: 419–425.

    Article  Google Scholar 

  • Cesarman GM, Guevara CA, Hajjar KA (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin ll-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem 269: 21198–21203.

    CAS  Google Scholar 

  • Chapman HA, Stone OL Jr (1984) Cooperation between plasmin and elastase in elastin degradation by intact murine macrophages. Biochem J 222: 721–728.

    PubMed  CAS  Google Scholar 

  • Cubellis MV, Wun TC, Blasi F (1990) Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1. EMBO J 9: 1079–1085.

    PubMed  CAS  Google Scholar 

  • Del Rosso M, Fibbi G, Dini G, Grappone C, Pucci M, Caldini R, Magnelli L, Fimiani M, Lotti T, Panconesi E (1990) Role of specific membrane receptors in urokinase-dependent migration of human keratinocytes. J Invest Dermatol 94: 310–316.

    Article  PubMed  Google Scholar 

  • Del Rosso M, Anichini E, Pedersen N, Blasi F, Fibbi G, Pucci M, Ruggiero M (1993) Urokinase-urokinase receptor interaction: non-mitogenic signal transduction in human epidermal cells. Biochem Biophys Res Commun 190: 347–352.

    Article  PubMed  Google Scholar 

  • DiMario J, Buffinger N, Yamada S, Strohman RC (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 244: 688–690.

    Article  PubMed  CAS  Google Scholar 

  • Dubois-Stringfellow N, Jonczyk A, Bautch VL (1994) Perturbations in the fibrinolytic pathway abolish cyst formation but not capillary-like organization of cultured murine endothelial cells. Blood 83: 3206–3217.

    PubMed  CAS  Google Scholar 

  • Eaton DL, Scott RW, Baker JB (1984) Purification of human fibroblast urokinase proenzyme and analysis of its regulation by proteases and protease nexin. J Biol Chem 259: 6241–6247.

    PubMed  CAS  Google Scholar 

  • Ellis V, Behrendt N, Dano K (1991) Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem 266: 12752–12758.

    CAS  Google Scholar 

  • Felez J, Chanquia CJ, Fabregas P, PPlow EF, Miles LA (1993) Competition between plasminogen and tissue plasminogen activator for cellular binding sites. Blood 82: 2433–2441.

    PubMed  CAS  Google Scholar 

  • Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW (1991) The vascular endothelial cell growth factor family of polypeptides. J Cell Biochem 47: 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Fibbi G, Ziehe M, Morbidelli L, Magnelli L, Del Rosso M (1988) Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells. Exp Cell Res 179: 385–395 [published erratum in Exp Cell Res 186:196]

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ, Ellis LM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis (comment). Cell 79: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Flaumenhaft R, Moscatelli D, Rifkin DB (1990) Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol 111:1651–1659.

    Article  PubMed  CAS  Google Scholar 

  • Flaumenhaft R, Abe M, Mignatti P, Rifkin DB (1992) Basic fibroblast growth factor-induced activation of latent transforming growth factor β in endothelial cells: regulation of plasminogen activator activity. J Cell Biol 118: 901–909.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1986) How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes Memorial Award Lecture. Cancer Res 46: 467–473.

    PubMed  CAS  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6 (editorial).

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL, Polverini P, Rosen EM (1993) Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 90: 1937–1941.

    Article  PubMed  CAS  Google Scholar 

  • Gross JL, Moscatelli D, Rifkin DB (1983) Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci USA 80: 2623–2627.

    Article  PubMed  CAS  Google Scholar 

  • Hajjar KA (1991) The endothelial cell tissue plasminogen activator receptor. Specific interaction with plasminogen. J Biol Chem 266: 21962–21970.

    CAS  Google Scholar 

  • Hajjar KA (1993) Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor. J Clin Invest 91: 2873–2879.

    Article  PubMed  CAS  Google Scholar 

  • Hajjar KA, Hamel NM (1990) Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase. J Biol Chem 265: 2908–2916.

    PubMed  CAS  Google Scholar 

  • Hajjar KA, Harpel PC, Jaffe EA, Nachman RL (1986) Binding of plasminogen to cultured human endothelial cells. J Biol Chem 261:11656–11662.

    PubMed  CAS  Google Scholar 

  • Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 269: 21191–21197.

    CAS  Google Scholar 

  • Hébert CA, Baker JB (1988) Linkage of extracellular plasminogen activator to the fibroblast cyto-skeleton: colocalization of cell surface urokinase with vinculin. J Cell Biol 106: 1241–1248.

    Article  PubMed  Google Scholar 

  • Heeb MJ, Espana F, Geiger M, Collen D, Stump DC, Griffin JH (1987) Immunological identity of heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibitor-3. J Biol Chem 262: 15813–15816.

    PubMed  CAS  Google Scholar 

  • Heimark RL, Twardzik DR, Schwartz SM (1986) Inhibition of endothelial cell regeneration by type-beta transforming growth factor from platelets. Science 233: 1078–1080.

    Article  PubMed  CAS  Google Scholar 

  • Hekman CM, Loskutoff DJ (1985) Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 260: 11581–11587.

    PubMed  CAS  Google Scholar 

  • Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031–26037.

    PubMed  CAS  Google Scholar 

  • Kanalas JJ, Makker SP (1991) Identification of the rat Heymann nephritis autoantigen (gp330) as a receptor site for plasminogen. J Biol Chem 266: 10825–10829.

    PubMed  CAS  Google Scholar 

  • Kawano T, Morimoto K, Uemura Y (1970) Partial purification and properties of urokinase inhibitor from human placenta. J Biochem 67: 333–342.

    PubMed  CAS  Google Scholar 

  • Kleiner DE, Stetler-Stevenson WG (1993) Structural biochemistry and activation of matrix metallo-proteinases. Curr Opin Cell Biol 5: 891–897.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen P, Larsson LI, Nielsen LS, Grandahl-Hansen J, Andreasen PA, Daño K (1984) Human endothelial cells contain one type of plasminogen activator. FEBS Lett 168: 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Kruithof EKO, Vassalli JD, Schleuning W-D, Mattaliano RJ, Bachman F (1986) Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U-937. J Biol Chem 261: 11207–11213.

    PubMed  CAS  Google Scholar 

  • Laterra J, Indurii RR, Goldstein GW (1994) Regulation of in vitro glia-induced microvessel morphogenesis by urokinase. J Cell Physiol 158: 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Laug WE, Tokes ZA, Benedict WF, Sorgente N (1980) Anchorage independent growth and plasminogen activator production by bovine endothelial cells. J Cell Biol 84: 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Ellis V, Dichek DA (1994) Characterization of plasminogen activation by glycosylphos-phatidylinositol-anchored urokinase. J Biol Chem 269: 2411–2418.

    PubMed  CAS  Google Scholar 

  • Levin EG, Loskutoff DJ (1982) Cultured bovine endothelial cells produce both urokinase and tissue-type plasminogen activators. J Cell Biol 94: 631–636.

    Article  PubMed  CAS  Google Scholar 

  • Loskutoff DJ, Edgington TS (1977) Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc Natl Acad Sci USA 74: 3903–3907.

    Article  PubMed  CAS  Google Scholar 

  • Lyons RM, Keski Oja J, Moses HL (1988) Proteolytic activation of latent transforming growth factor-β from fibroblast conditioned medium. J Cell Biol 106: 1659–1665.

    Article  PubMed  CAS  Google Scholar 

  • Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor β-1 by plasmin. J Cell Biol 110: 1361–1367.

    Article  PubMed  CAS  Google Scholar 

  • Maciag T (1984) Angiogenesis. Angiogenesis: the phenomenon. In: Spaet TH (ed) Thrombosis and haemostasis. Grune and Stratton, New York, pp 167–182.

    Google Scholar 

  • Mandriota S, Seghezzi G, Vassalli JD, Ferrara N, Wasi S, Mazzieri R, Mignatti P, Pepper MS (1995) Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem (in press).

    Google Scholar 

  • Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73: 161–195.

    PubMed  CAS  Google Scholar 

  • Mignatti P, Robbins E, Rifkin DB (1986) Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47: 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P, Tsuboi R, Robbins E, Rifkin DB (1989) In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 108: 671–682.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P, Mazzieri R, Rifkin DB (1991a) Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor. J Cell Biol 113: 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P, Morimoto T, Rifkin DB (1991 b) Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner. Proc Natl Acad Sci USA 88: 11007–11011.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P, Morimoto T, Rifkin DB (1992) Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum- Golgi complex. J Cell Physiol 151: 81–93.

    Article  PubMed  CAS  Google Scholar 

  • Miles LA, Plow EF (1985) Binding and activation of plasminogen on the platelet surface. J Biol Chem 260: 4303–4311.

    PubMed  CAS  Google Scholar 

  • Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF (1991) Role of cell-surface lysines in plasminogen binding to cells: Identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30: 1682–1691.

    Article  PubMed  CAS  Google Scholar 

  • Miyazono K, Hellman U, Westedt C, Heldin CH (1988) Latent high molecular weight complex of transforming growth factor β1. J Biol Chem 263: 6407–6415.

    PubMed  CAS  Google Scholar 

  • Mizuno K, Nakamura T (1993) Molecular characteristics of HGF and the gene, and its biochemical aspects. EXS 65: 1–29.

    PubMed  CAS  Google Scholar 

  • MØller LB, Pöllanen J, RØnne E, Pedersen N, Blasi F (1993) N-linked glycosylation of the ligand-binding domain of the human urokinase receptor contributes to the affinity for its ligand. J Biol Chem 268, 11152–11159.

    PubMed  Google Scholar 

  • Montesano R, Orci L (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42: 469–477.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83: 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Pepper MS, Vassalli JD, Orci L (1987) Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J Cell Physiol 132: 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Pepper MS, Belin D, Vassalli JD, Orci L (1988) Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 134: 460–466.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Pepper MS, Möhle-Steinlein U, Risau W, Wagner EF, Orci L (1990) Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62: 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Morton PA, Owensby DA, Wun TC, Billadello J, Schwartz AL (1990) Identification of determinants involved in binding of tissue-type plasminogen activator-plasminogen activator inhibitor type 1 complexes to HepG2 cells. J Biol Chem 265: 14093–14099.

    PubMed  CAS  Google Scholar 

  • Moscatelli D, Rifkin DB (1988) Membrane and matrix localization of proteinase: a common theme in tumor cell invasion and angiogenesis. Biochim Biophys Acta 948: 67–85.

    PubMed  CAS  Google Scholar 

  • Moscatelli D, Jaffe E, Rifkin DB (1980) Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell 20: 343–51.

    Article  PubMed  CAS  Google Scholar 

  • Moscatelli D, Presta M, Joseph-Silverstein J, Rifkin DB (1986a) Both normal and tumor cells produce basic fibroblast growth factor. J Cell Physiol 129: 273–276.

    Article  PubMed  CAS  Google Scholar 

  • Moscatelli D, Presta M, Rifkin DB (1986b) Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration. Proc Natl Acad Sci USA 83: 2091–2095.

    Article  PubMed  CAS  Google Scholar 

  • Moser TL, Enghild JJ, Pizzo SV, Stack MS (1993) The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator. J Biol Chem 268: 18917–18923.

    PubMed  CAS  Google Scholar 

  • Muller G, Behrens J, Nussbaumer U, Bohlen P, Birchmeyer W (1987) Inhibitory action of transforming growth factor β on endothelial cells. Proc Natl Acad Sci USA 84: 5600–5604.

    Article  PubMed  CAS  Google Scholar 

  • Murphy G, Allan JA, Willenbrock F, Cockett Ml, O’Connell JP, Docherty AJP (1992) The C-terminal domain in collagenase and stromelysin specificity. J Biol Chem 267: 9612–9618.

    PubMed  CAS  Google Scholar 

  • Naldini L, Tamagnone L, Vigna E, Sachs M, Hartmann G, Birchmeier W, Daikuhara Y, Tsubouchi H, Blasi F, Comoglio PM (1992) Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EM BO J 11: 4825–4833.

    CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328.

    Article  PubMed  Google Scholar 

  • Odekon LE, Sato Y, Rifkin DB (1992) Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity. J Cell Physiol 150: 258–263.

    Article  PubMed  CAS  Google Scholar 

  • Odekon LE, Blasi F, Rifkin DB (1994) Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-beta to TGF-beta. J Cell Physiol 158: 398–407.

    Article  PubMed  CAS  Google Scholar 

  • Pepper MS, Vassalli JD, Montesano R, Orci L (1987) Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J Cell Biol 105: 2535–2541.

    Article  PubMed  CAS  Google Scholar 

  • Pepper MS, Belin D, Montesano R, Orci L, Vassalli JD (1990) Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111: 743–755.

    Article  PubMed  CAS  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R (1991) Vascular endothelial cell growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181: 902–906.

    Article  PubMed  CAS  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R (1992a) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189: 824–831.

    Article  PubMed  CAS  Google Scholar 

  • Pepper MS, Sappino AP, Montesano R, Orci L/Vassalli JD (1992b) Plasminogen activator inhibitor-1 is induced in migrating endothelial cells. J Cell Physiol 153: 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Pepper MS, Sappino AP, Stocklin R, Montesano R, Orci L, Vassalli JD (1993) Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol 122: 673–684.

    Article  PubMed  CAS  Google Scholar 

  • Peverali FA, Mandriota S, Ciana P, Marelli R, Quax P, Rifkin DB, Della Valle G, Mignatti P (1994) Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells. J Cell Physiol 161: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Philips M, Juul AG, Thorsen S (1984) Human endothelial cells produce a plasminogen activator inhibitor and a tissue plasminogen activator-inhibitor complex. Biochim Biophys Acta 802: 99–110.

    PubMed  CAS  Google Scholar 

  • Ploug M, Ronne E, Behrendt N, Jensen AL, Blasi F, Daño K (1991) Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl- phosphatidylinositol. J Biol Chem 266: 1926–1933.

    CAS  Google Scholar 

  • Plow EF, Miles LA (1990) Plasminogen receptors in the mediation of pericellular proteolysis. Cell Differ Dev 32: 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Plow EF, Freaney DE, Plescia J, Miles LA (1986) The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol 103: 2411–2420.

    Article  PubMed  CAS  Google Scholar 

  • Pollack R, Rifkin DB (1975) Actin-containing cables within anchorage-dependent rat embryo cells are dissociated by plasmin and trypsin. Cell 6: 495–506.

    Article  Google Scholar 

  • Pöllanen J, Hedman K, Nielsen LN, Dano K, Vaheri A (1988) Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J Cell Biol 106: 87–95.

    Article  PubMed  Google Scholar 

  • Ramakrishnan V, Sinicropi DV, Dere R, Darbonne WC, Bechtol KB, Baker JB (1990) Interaction of wild-type and catalytically inactive mutant forms of tissue-type plasminogen activator with human umbilical vein endothelial cell monalayers. J Biol Chem 265: 2755–2762.

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine Ul, Liotta LA, Falanga V, Kehrl JH, Fauci AS (1986) Transforming growth factor type β: rapid induction of fibrosis and angio-genesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83: 4167–4171.

    Article  PubMed  CAS  Google Scholar 

  • Rogelj S, Klagsbrun M, Atzmon R, Kurokawa M, Haimovitz A, Fuks Z, Vlodavski I (1989) Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the diffferentiation of PC12 cells. J Cell Biol 109: 823–831.

    Article  PubMed  CAS  Google Scholar 

  • Roldan AL, Cubellis MV, Masucci MT, Behrendt N, Lund LR, Dan0 K, Appella E, Blasi F (1990) Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 9: 467–474.

    PubMed  CAS  Google Scholar 

  • Russell ME, Quertermous T, Declerck PJ, Collen D, Haber E, Homey CJ (1990) Binding of tissue-type plasminogen activator with human endothelial cell monolayers. Characterization of the high affinity interaction with plasminogen activator inhibitor-1. J Biol Chem 265: 2569–2575.

    PubMed  CAS  Google Scholar 

  • Saksela O, Rifkin DB (1988) Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol 4: 93–126.

    Article  PubMed  CAS  Google Scholar 

  • Saksela O, Rifkin DB (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 110: 767–775.

    Article  PubMed  CAS  Google Scholar 

  • Saksela O, Moscatelli D, Rifkin DB (1987) The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells. J Cell Biol 105: 957–963.

    Article  PubMed  CAS  Google Scholar 

  • Saksela O, Moscatelli D, Sommer A, Rifkin DB (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 107: 743–751.

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Rifkin DB (1988) Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol 107: 1199–1205.

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor β-1-like molecule by plasmin. J Cell Biol 109: 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Tsuboi R, Lyons RM, Moses HL, Rifkin DB (1990) Characterization of the activation of latent TGFβ by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J Cell Biol 111:757–763.

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Risau W, Vollmer E, Sorg C (1990) In situ detection of basic fibroblast growth factor by highly specific antibodies. Am J Pathol 137: 85–92.

    PubMed  CAS  Google Scholar 

  • Shih GC, Hajjar KA (1993) Plasminogen and plasminogen activator assembly on the human endothelial cell. Proc Soc Exp Biol Med 202: 258–64.

    PubMed  CAS  Google Scholar 

  • Stack MS, Pizzo SV (1993) Modulation of tissue plasminogen activator-catalyzed plasminogen activation by synthetic peptides derived from the amino-terminal heparin binding domain of fibronectin. J Biol Chem 268: 18924–18928.

    PubMed  CAS  Google Scholar 

  • Thompson EA, Nelles L, Collen D (1991) Effect of retinoic acid on the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in human endothelial cells. Eur J Biochem 201: 627–632.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi R, Sato Y, Rifkin DB (1990) Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells. J Cell Biol 110:511–517.

    Article  PubMed  CAS  Google Scholar 

  • van Hinsbergh VW, van den Berg EA, Fiers W, Dooijewaard G (1990) Tumor necrosis factor induces the production of urokinase-type plasminogen activator by human endothelial cells. Blood 75: 1991–1998.

    PubMed  Google Scholar 

  • Vassalli J-D, Baccino D, Belin D (1985) A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol 100: 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 43: 2704–2711.

    PubMed  CAS  Google Scholar 

  • Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angio¬genesis. Cancer Metastasis Rev 9: 203–226.

    Article  PubMed  CAS  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Werb Z, Mainardi C, Vater CA, Harris ED (1977) Endogenous activation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. N Engl J Med 296: 1017–1023.

    CAS  Google Scholar 

  • Werb Z, Banda MJ, Jones PA (1980) Degradation of connective tissue matrices by macrophages. I Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages. J Exp Med 152: 1340–1357.

    Article  PubMed  CAS  Google Scholar 

  • Wittwer AJ, Sanzo MA (1990) Effect of peptides on the inactivation of tissue plasminogen activator by plasminogen activator inhibitor-1 and on the binding of tissue plasminogen activator to endothelial cells. Thromb Haemost 64: 270–275.

    PubMed  CAS  Google Scholar 

  • Wolff JE, Guerin C, Laterra J, Bressler J, Indurii RR, Brem H, Goldstein GW (1993) Dexamethasone reduces vascular density and plasminogen activator activity in 9L rat brain tumors. Brain Res 604: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Yang EY, Moses HL (1990) Transforming growth factor β1-induced changes in cell migration, proliferation, and angiogenesis in the chick chorioallantoic membrane. J Cell Biol 111: 731–741.

    Article  PubMed  CAS  Google Scholar 

  • Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841–848.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mignatti, P., Rifkin, D.B. (1996). Plasminogen Activators and Angiogenesis. In: Günthert, U., Birchmeier, W. (eds) Attempts to Understand Metastasis Formation I. Current Topics in Microbiology 213/I and Immunology, vol 213/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61107-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61107-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64697-3

  • Online ISBN: 978-3-642-61107-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics