Skip to main content

Numerical Modelling of Inertia-Gravity Wave Emission by Fronts and Jets

  • Conference paper
Book cover Gravity Wave Processes

Part of the book series: NATO ASI Series ((ASII,volume 50))

Abstract

Idealized numerical-model calculations following the development of upper-level and low-level fronts and their attendant jets are presented. As the fronts and jets evolve, long-wavelength low-frequency inertia-gravity waves are emitted. The key components of the model basic-state are: a time-dependent cross-front geostrophic shear flow in thermal wind balance with the along-front potential temperature, and a time-independent height-independent confluent deformation wind field with its axis of dilation parallel to the front. When the cross-front geostrophic wind shear, Λ, is negative and consequently the upper-level jet advects cold air along the upper front, vertically propagating inertia-gravity waves are a prominent part of the model solution, especially in the lower stratosphere. Like those observed in the stratosphere, the modelled waves have frequencies close to the inertial frequency, horizontal wavelengths of order 400 – 1200 km, and vertical wavelengths in the range 2–10 km. Numerical experiments with Λ ≥ 0 show little gravity wave activity. The time-space mean of the vertical flux of horizontal momentum in the stratosphere associated with the modelled waves is approximately 1.4 x 10-4 N m -2, where the average is taken over a 24 h time interval, and over a 5000 km wide x 14 km high box in the lower stratosphere, centred over the jet/front system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S.J., and Vincent, R.A., 1995. Gravity wave activity in the lower atmosphere: seasonal and latitudinal variations. J. Geophys. Res., 100, 1327–1350.

    Article  Google Scholar 

  • Andrews, D.G., and McIntyre, M.E., 1976. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048.

    Article  Google Scholar 

  • Eckermann, S.D., and Vincent, R.A., 1989. Falling sphere observations of anistropic gravity wave motions in the upper stratosphere over Australia. Pageoph., 130, 509–532.

    Article  Google Scholar 

  • Eckermann, S. D., and Vincent, R. A., 1993. VHF radar observations of gravity wave production by cold fronts of southern Australia. J. Atmos. Sci., 50, 785 - 806.

    Article  Google Scholar 

  • Fritts, D. C., 1993. Gravity wave sources, source variability and lower and middle atmosphere effects. E. V. Thrane et. al., Ed., Coupling Processes in the Lower and Middle Atmosphere, Kluwer Academic Publishers, 191-208.

    Google Scholar 

  • Fritts, D. C., and Chou, H.-G., 1987. An investigation of the vertical wavenumber and frequency spectra of gravity wave motion in the lower stratosphere. J. Atmos. Sci., 44, 3610 - 3624.

    Article  Google Scholar 

  • Fritts, D. C., and Luo, Z., 1992. Gravity wave excitation by geostrophic adjustment of the jet stream. Part I: two-dimensional forcing. J. Atmos. Sci., 49, 681 - 697.

    Article  Google Scholar 

  • Fritts, D. C., Tsuda, T., Sato, T., Fukao, S., and Kato, S., 1988. Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J. Atmos. Sci., 45, 1741 - 1759.

    Article  Google Scholar 

  • Gall, R., Williams, R. T., and Clarke, T. L., 1988. Gravity waves generated during fron- togenesis, J. Atmos. Sci., 45, 2204 - 2219.

    Article  Google Scholar 

  • Garner, S. T., 1989. Fully Lagrangian numerical solutions of unbalanced frontogenesis and frontal collapse, J. Atmos. Sci., 46, 717 - 739.

    Article  Google Scholar 

  • Griffiths, M., and Reeder, M. J., 1996. Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. I: model solutions, Quart. J. Roy. Meteor. Soc., 122, 1153 - 1174.

    Google Scholar 

  • Hamilton, K., 1991. Climatological statistics of stratospheric inertia-gravity waves deduced from horizontal rocket sonde and temperature data. J. Geophys. Res., 96, 20831 - 20839.

    Article  Google Scholar 

  • Hirota, I., and Niki, T., 1986. Inertia gravity waves in the troposphere and stratosphere observed by the MU radar. J. Meteor. Soc. Japan, 64, 995 - 999.

    Google Scholar 

  • Hoskins, B. J., and Bretherton, F. P., 1972. Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci., 29, 11 - 37.

    Article  Google Scholar 

  • Keyser, D., and Pecnick, M. J., 1985. A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 1259- 1282.

    Google Scholar 

  • Ley, B., and Peltier, W. R., 1978. Wave generation and frontal collapse. J. Atmos. Sci., 35, 3 - 17.

    Article  Google Scholar 

  • Luo, Z., and Fritts, D. C., 1993. Gravity wave excitation by geostrophic adjustment of the jet stream. Part II: three-dimensional forcing. J. Atmos. Sci., 50, 104 - 115.

    Article  Google Scholar 

  • O’Sullivan, D., and Dunkerton, T. J., 1995. Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 3695 - 3716.

    Article  Google Scholar 

  • Reeder, M. J., and Griffiths, M., 1996. Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. II: wave sources and generation mechanisms. Quart. J. Roy. Meteor. Soc., 122, 1175 - 1195.

    Google Scholar 

  • Reeder, M. J., and Keyser, D., 1988. Balanced and unbalanced frontogenesis. J. Atmos. Set., 45, 3366 - 3386.

    Article  Google Scholar 

  • Sato, K., 1994. A statistical study of the structure, saturation and sources of inertio- gravity waves in the lower stratosphere observed with the MU radar. J. Atmos. Terr. Phys., 50, 755 - 774.

    Article  Google Scholar 

  • Snyder, C., Skamarock, W. C., and Rotunno, R., 1993. Frontal dynamics near and following frontal collapse. J. Atmos. Sci50, 3194 - 3211.

    Google Scholar 

  • Thompson, R. O. R. Y., 1978. Observation of inertia! waves in the stratosphere. Quart. J. Roy. Meteor. Soc., 104, 691 - 698.

    Article  Google Scholar 

  • Vincent, R. A., 1990. Gravity waves in the southern hemisphere middle atmosphere: a review of observations. A. O’Neill, Ed., Dynamics, Transport and Photochemistry in the Middle Atmosphere of the Southern Hemisphere, Kluwer Academic Publishers, 159-170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reeder, M.J., Griffiths, M. (1997). Numerical Modelling of Inertia-Gravity Wave Emission by Fronts and Jets. In: Hamilton, K. (eds) Gravity Wave Processes. NATO ASI Series, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60654-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60654-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64495-5

  • Online ISBN: 978-3-642-60654-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics