Skip to main content

Simulation of Internal and Free Turbulent Flows

  • Conference paper
  • 470 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 8))

Abstract

In this paper Large-eddy simulations (LES) of several flow problems are presented. First, the performance of two different solution schemes, both formulated for compressible flows, is compared for the case of a spatially developing plane turbulent jet. A second-order scheme based on an AUSM method with a central difference of the pressure derivatives and a compact finite difference scheme of sixth order are used with a dynamic model and also without any subgrid scale model. The boundary conditions correspond to a jet evolving into a fluid at rest; at the outflow plane non-reflecting conditions following Poinsot and Lele were used. Simulations were carried out for a Mach number of 0.1 and Reynolds number of 7600 and 22.000. The analysis of the flow field shows that both schemes produce results of comparable accuracy. The main reason why the higher-order scheme does not provide more accurate results than the second-order method, is probably the application of an explicit filter, which had to be used to remove high-frequency oscillations. The other flow problems presented are therefore simulated with the computationally less expensive second-order scheme. Results are presented for internal flows in straight and curved pipes, as well as a flow around a circular cylinder at a Reynolds number of 3900. Good agreement with reference data was found in all cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaudan, P., Moin, P.: Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds numbers. Technical Report TF-62, Center Turb. Res., 1994

    Google Scholar 

  2. Breuer, M.: Large-eddy simulations of the flow past bluff bodies: Numerical and modelling aspects. In B. Geurts and H. Kuerten, editors, DNS and LES of Complex Flows Numerical and Modelling Aspects. Universiteit Twente, 1997. ISSN 0169-2690

    Google Scholar 

  3. Cardell, G.: Flow past a circular cylinder with a permeable splitter plate. Dissertation, California Institute of Technology, Graduate Aeronautical Laboratories, 1993

    Google Scholar 

  4. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys., 108:272–295, 1993

    Article  MathSciNet  MATH  Google Scholar 

  5. Durst, F., Jovanovic, J., Sender, J.: LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech., 295:305–335, 1995

    Article  Google Scholar 

  6. Eckelmann, H.: The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech., 65:439–460, Sept. 1974

    Article  Google Scholar 

  7. Eidson, T. M.: Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling. J. Fluid Mech., 158:245–268, June 1985

    Article  MathSciNet  MATH  Google Scholar 

  8. Erlebacher, G., Hussaini, M.Y., Speziale, C.G., Zang, T. A.: Toward the largeeddy simulation of compressible turbulent flows. J. Fluid Mech., 238:155–185, 1992

    Article  MATH  Google Scholar 

  9. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, A 3(7)1760–1765, July 1991

    Article  MATH  Google Scholar 

  10. Ghosal, S., Moin, P.: The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys., 118:24–37, 1995

    Article  MathSciNet  MATH  Google Scholar 

  11. Jameson, A.: Solution of the Euler equations for two-dimensional transonic flow by a multigrid method. Applied Math, and Comp., 13:327–355, 1983

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177:133–166, 1987

    Article  MATH  Google Scholar 

  13. Lele, S. K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103:16–42, 1992

    Article  MathSciNet  MATH  Google Scholar 

  14. Lesieur, M., Metais, O.: New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid. Mech., 28:45–82, 1996

    Article  MathSciNet  Google Scholar 

  15. Lund, T. S.: Large-eddy simulation of a boundary layer with concave streamwise curvature. In Ann. Res. Briefs, pages 185-196. Center Turb. Res., 1994

    Google Scholar 

  16. Meinke, M., Schulz, C., Rister, T.: LES of Spatially Developing Jets. In R. Friedrich and P. Bontoux, editors, Computation and visualization of threedimensional vortical and turbulent flows. Proceedings of the Fifth CNRS/DFG Workshop on Numerical Flow Simulation, volume NNFM 64, pages 116-131, Vieweg Verlag, 1998

    Google Scholar 

  17. Moin, P., Kim, J.: Numerical investigation of turbulent channel flow. J. Fluid Mech., 118:341–377, 1982

    Article  MATH  Google Scholar 

  18. Norberg, C.: Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder. Technical report, Department of Applied Thermodynamics and Fluid Mechanics, Chalmers University of Technology, Gothenburg, Sweden, Publication No. 87/2, 1987

    Google Scholar 

  19. Ong, L., Wallace, J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. in Fluids, 20:441–453, 1996

    Article  Google Scholar 

  20. Piomelli, U.: High Reynolds number calculations using the dynamic subgridscale stress model. Phys. Fluids, A 5(6)1484–1490, June 1993

    Article  Google Scholar 

  21. Piomelli, U., Moin, P., Ferziger, J.: Model consistency in LES of turbulent channel flows. Phys. Fluids, 31 (7) 1884–1891, July 1988

    Article  Google Scholar 

  22. Poinsot, T.J., Lele, S. Ka.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101:104–129, 1992

    Article  MathSciNet  MATH  Google Scholar 

  23. Rister, T.: Grobstruktursimulation schwach kompressibler turbulenter Freistrahlen - ein Vergleich zweier Lösungsansatze. Dissertation, Aerodyn. Inst. RWTH Aachen, 1998

    Google Scholar 

  24. Russ, S., Stykowski, P. J.: Turbulent structure and entrainment in heated jets: The effect of initial conditions. Phys. Fluids, A 5(12)3216–3225, Dec. 1993

    Article  Google Scholar 

  25. Schulz, C.: Grobstruktursimulation turbulenter Freistrahlen. Dissertation, Aerodyn. Inst. RWTH Aachen, 1997

    Google Scholar 

  26. Son, J., Hanratty, T.: Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105. J. Fluid. Mech., 35:353–368, 1969

    Article  Google Scholar 

  27. Thompson, K. W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys., 68(l)l–24, 1987

    Google Scholar 

  28. Unger, F.: Numerische Simulation turbulenter Rohrströmungen. Dissertation, Lehrstuhl für Fluidmechanik, Technische Universität München, Feb. 1994

    Google Scholar 

  29. Wei, T., Willmarth, W. W.: Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech., 204:57–95, 1989

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meinke, M., Rister, T., Rütten, F., Schvorak, A. (1999). Simulation of Internal and Free Turbulent Flows. In: Bungartz, HJ., Durst, F., Zenger, C. (eds) High Performance Scientific and Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60155-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60155-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65730-9

  • Online ISBN: 978-3-642-60155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics