Skip to main content

Numerical Simulation of Microstructured Semiconductor Devices, Transducers, and Systems

  • Conference paper
High Performance Scientific and Engineering Computing

Abstract

The numerical simulation of microstructured semiconductor devices, transducers, and systems aiming at an optimal layout and design often has to take into account that the operating behaviour is based on the interaction of various physical phenomena. This requires on one hand the simulation to be based on a consistent, tailored modeling of the underlying physical processes and on the other hand the use of modern methods in the numerical solution of PDEs and systems thereof such as efficient iterative solvers and adaptive grid refinement and coarsening. In this contribution, the development and implementation of such techniques will be outlined for three industrially relevant case studies. The first one is concerned with the minimization of parasitic effects in converter modules used in high power electronics which amounts to the solution of a shape and topology optimization problem. Here, we consider the efficient computation of electromagnetic potentials related to Maxwell’s equations based on a discretization in terms of curl-conforming edge elements. The second problem deals with electrostatically driven micromembrane pumps that are intended to be used in medical sciences to control metabolism or in the chemical analysis of freshwater bodies. In particular, we will address the simulation of the electromechanical coupling that characterizes the operating behaviour of the electrostatic drive and the fluid-structure interaction between the fluid flow and the deformation of the passive valves. Finally, we consider the computation of the temperature and heat flow distribution in micromachined deformable mirrors that can be used for the positioning of laser beams in optical eye surgery. Emphasis will be laid on a combined time-step selection and adaptivity in space for a primal mixed discretization of the underlying heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W., Wohlmut, B.: Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. To appear in Surveys of Math, in Industry, 1998

    Google Scholar 

  2. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmut, B.: Residual-based a posteriori error estimators for curl-conforming finite element approximations. To be submitted to Math. Model. Anal. Numer.

    Google Scholar 

  3. Bornemann, F.A.: An adaptive multilevel approach to parabolic problems in two space dimensions. Dissertation, Freie Universität Berlin, 1991

    Google Scholar 

  4. Brandt, A.: Multi-level adaptive solutions of boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conrad, F., Issard-Roche, F., Brauner, C.-M., Nikolaenko, B.: Nonlinear eigenvalue problems in elliptic variational inequalities: A local study. Comm. Partial Differential Equations 10, 151–190, 1985

    Article  MathSciNet  MATH  Google Scholar 

  6. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin-Heidelberg-New York, 1982

    Google Scholar 

  7. Hoppe, R.H.W., Sieber, E.R., Wachutka, G., Wiest, U.: Mathematical modelling and numerical simulation of a free boundary problem for an electromechanical micropump. An. St. Univ. Ovidius Constanta, Vol. 5(1), 65–78, 1996

    MathSciNet  Google Scholar 

  8. Hoppe, R.H.W., Mittelmann, H.D.: A multi-grid continuation strategy for parameter-dependent variational inequalities. J. Comput. Appl. Math. 26, 35–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kühn, F.: Volladaptive Finite-Elemente-Verfahren in der Simulation instationärer elektrothermischer Effekte in mikromechanischen Bauteilen. Diplomarbeit, Universitat Augsburg, 1997

    Google Scholar 

  10. Nédélec, J.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rheinboldt, W.C.: Numerical Analysis of Parametrized Nonlinear Equations. John Wiley & Sons, New York, 1986

    MATH  Google Scholar 

  12. van de Schoot, B.H., Jaenneret, S., van den Berg, A., de Roji, N.F.: Modular setup for a miniaturized chemical analysis system. Sensors &; Actuators B 15-16, 211–213 (1993)

    Article  Google Scholar 

  13. Shoji, S., Nakagawa, S., Esashi, M.: Micropump and sample-injector for integrated chemical analyzing systems. Sensors &; Actuators A 41-42, 189–192 (1990)

    Article  Google Scholar 

  14. Turek, S.: FEATFLOW. Finite element software for the incompressible Navier-Stokes equations: User Manual, Release 1.0. University of Heidelberg, 1995

    Google Scholar 

  15. Zengerle, R.: Mikro-Membranpumpen als Komponenten für Mikro-Fluidsysteme. Dissertation, Universitat der Bundeswehr München, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dürndorfer, S., Gradinaru, V., Hoppe, R.H.W., König, ER., Schrag, G., Wachutka, G. (1999). Numerical Simulation of Microstructured Semiconductor Devices, Transducers, and Systems. In: Bungartz, HJ., Durst, F., Zenger, C. (eds) High Performance Scientific and Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60155-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60155-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65730-9

  • Online ISBN: 978-3-642-60155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics