Skip to main content

What are Bacterial Extracellular Polymeric Substances?

  • Chapter
Microbial Extracellular Polymeric Substances

Abstract

The vast majority of microorganisms live and grow in aggregated forms such as biofilms and flocs (“planktonic biofilms”). This mode of existence is lumped in the somewhat inexact but generally accepted expression “biofilm”. The common feature of all these phenomena is that the microorganisms are embedded in a matrix of extracellular polymeric substances (EPS). The production of EPS is a general property of microorganisms in natural environments and has been shown to occur both in prokaryotic (Bacteria, Archaea) and in eukaryotic (algae, fungi) microorganisms. Biofilms containing mixed populations of these organisms are ubiquitously distributed in natural soil and aquatic environments, on tissues of plants, animals and man as well as in technical systems such as filters and other porous materials, reservoirs, plumbing systems, pipelines, ship hulls, heat exchangers, separation membranes, etc. (Costerton et al. 1987; 1995; Flemming and Schaule 1996). Biofilms develop adherent to a solid surface (substratum) at solid-water interfaces, but can also be found at water-oil, water-air and solid-air interfaces. Biofilms are accumulations of microorganisms (prokaryotic and eukaryotic unicellular organisms), EPS, multivalent cations, biogenic and inorganic particles as well as colloidal and dissolved compounds. EPS are mainly responsible for the structural and functional integrity of biofilms and are considered as the key components that determine the physicochemical and biological properties of biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angles ML, Marshall KC, Goodman AE (1993) Plasmid transfer between marine bacteria in the aqueous phase and biofilms in reactor microcosms. Appl Environ Microbiol 59: 843–850

    CAS  Google Scholar 

  • Azeredo J, Oliveira R, Lazarova V (1998) A new method for extraction of exopolymers from activated sludges. Wat Sci Tech 37: 367–370

    Article  CAS  Google Scholar 

  • Bale MJ, Fry JC, Day MJ (1988) Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl Environ Microbiol 54: 972–978

    CAS  Google Scholar 

  • Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GSAB, Williams P, Prosser JI (1997) Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl Environ Microbiol 63: 2281–2286

    CAS  Google Scholar 

  • Becker A, Katzen F, Puhler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50: 145–152

    Article  CAS  Google Scholar 

  • Bertocchi C, Navarini L, Cesaro A (1990) Polysaccharides from cyanobacteria. Carbohydr Polym 12: 127–153

    Article  CAS  Google Scholar 

  • Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20: 291–303

    Article  CAS  Google Scholar 

  • Binet R, Létoffé S, Ghigo JM, Delepelaire P, Wandersman C (1997) Protein secretion by Gramnegative bacterial ABC exporters - a review. Gene 192: 7–11

    Article  CAS  Google Scholar 

  • Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60: 2355–2359

    CAS  Google Scholar 

  • Brown MRW, Gilbert P (1993) Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol Symp Suppl 74: 87S - 97S

    Google Scholar 

  • Burns RG (1989) Microbial and enzymic activities in soil biofilms. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, Chichester, pp 333–349

    Google Scholar 

  • Cadieux JE, Kuzio J, Milazzo FH, Kropinski AM (1983) Spontaneous release of lipopolysac-charide by Pseudomonas aeruginosa. J Bacteriol 155: 817–825

    CAS  Google Scholar 

  • Characklis WG, Wilderer PA (1989) Glossary. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, Chichester, pp 369–371

    Google Scholar 

  • Christensen BE (1989) The role of extracellular polysaccharides in biofilms. J Biotechnol 10: 181–202

    Article  CAS  Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 93–130

    Google Scholar 

  • Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238: 86–95

    Article  CAS  Google Scholar 

  • Costerton JW, Irvin RT, Cheng K-J (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35: 299–324

    Article  CAS  Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435–464

    Article  CAS  Google Scholar 

  • Costerton JW, Brown MRW, Lam J, Lam K, Cochrane DMG (1990) The microcolony mode of growth in vivo–an ecological perspective. In: Gacesa P, Russell NJ (eds) Pseudomonas infection and alginates. Chapman and Hall, London, pp 76–94

    Chapter  Google Scholar 

  • Costerton JW, Lappin-Scott HM, Cheng K-J (1992) Glycocalyx, bacterial. In: Lederberg J (ed) Encyclopedia of microbiology, vol 2. Academic Press, San Diego, pp 311–317

    Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176: 2137–2142

    CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745

    Article  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298

    Article  CAS  Google Scholar 

  • De Beer D, van den Heuvel JC, Ottengraf SPP (1993) Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Appl Environ Microbiol 59: 573–579

    Google Scholar 

  • De Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60: 4339–4344

    Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28: 73–153

    Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22: 151–175

    Article  Google Scholar 

  • Dignac M-F, Urbain V, Rybacki D, Bruchet A, Snidaro D, Scribe P (1998) Chemical description of extracellular polymers: implication on activated sludge floc structure. Wat Sci Tech 38: 45–53

    Article  CAS  Google Scholar 

  • Filloux A, Michel G, Bally M (1998) GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 22: 177–198

    CAS  Google Scholar 

  • Flemming H-C (1995) Sorption sites in biofilms. Wat Sci Tech 32: 27–33

    Article  CAS  Google Scholar 

  • Flemming H-C (1996) The forces that keep biofilms together. In: Sand W (ed) Biodeter- ioration and biodegradation. Dechema Monographs 133. VCH, Weinheim, pp 311–316

    Google Scholar 

  • Flemming H-C, Schaule G (1989) Biofouling auf Umkehrosmose-und Ultrafiltrations- membranen. Teil II: Analyse und Entfernung des Belages. Vom Wasser 73: 287–301

    Google Scholar 

  • Flemming H-C, Schaule G (1996) Biofouling. In: Heitz E, Flemming H-C, Sand W (eds) Microbially influenced corrosion of materials. Springer, Berlin Heidelberg New York, pp 39–54

    Google Scholar 

  • Flemming H-C, Schmitt J, Marshall KC (1996) Sorption properties of biofilms. In: Calmano W, Förstner U (eds) Environmental behaviour of sediments. Lewis, Chelsea, Michigan, pp 115–157

    Google Scholar 

  • Foley I, Gilbert P (1996) Antibiotic resistance of biofilms. Biofouling 10. 331–346

    Article  CAS  Google Scholar 

  • Frolund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Wat Res 30: 1749–1758

    Article  Google Scholar 

  • Gacesa P (1998) Bacterial alginate biosynthesis–recent progress and future prospects. Microbiology 144: 1133–1143

    Article  CAS  Google Scholar 

  • Gacesa P, Russell NJ (eds) (1990) Pseudomonas infection and alginates. Biochemistry, genetics and pathology. Chapman and Hall, London

    Google Scholar 

  • Geesey GG (1982) Microbial exopolymers: ecological and economic considerations. ASM News 48: 9–14

    Google Scholar 

  • Gehr R, Henry JG (1983) Removal of extracellular material. Wat Res 17: 1743–1748

    Article  CAS  Google Scholar 

  • Govan JRW (1990) Characteristics of mucoid Pseudomonas aeruginosa in vitro and in vivo. In: Gacesa P, Russell NJ (eds) Pseudomonas infection and alginates. Biochemistry, genetics and pathology. Chapman and Hall, London, pp 50–75

    Google Scholar 

  • Govan JRW, Deretic V (1996) Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60: 539–574

    CAS  Google Scholar 

  • Hedges JI (1988) Polymerization of humic substances in natural environments. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, Chichester, pp 45–58

    Google Scholar 

  • Heys SJD, Gilbert P, Eberhard A, Allison DG (1997) Homoserine lactones and bacterial bio-films. In: Wimpenny J, Handley P, Gilbert P, Lappin-Scott H, Jones M (eds) Biofilms: community interactions and control. BioLine, Cardiff, pp 103–112

    Google Scholar 

  • Higgins MJ, Novak JT (1997) Characterization of exocellular protein and its role in bioflocculation. J Environ Eng 123: 479–485

    Article  CAS  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379–433

    CAS  Google Scholar 

  • Isaac DH (1985) Bacterial polysaccharides. In: Atkins EDT (ed) Polysaccharides. Chemie, Weinheim, pp 141–184

    Google Scholar 

  • Jacques M, Gottschalk M (1997) Use of monoclonal antibodies to visualize capsular material of bacterial pathogens by conventional electron microscopy. Microsc Microanal 3: 234–238

    CAS  Google Scholar 

  • Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16: 396–403

    Article  CAS  Google Scholar 

  • Jahn A, Nielsen PH (1995) Extraction of extracellular polymeric substances (EPS) from. bio-films using a cation exchange resin. Wat Sci Tech 1995: 157–164

    Google Scholar 

  • Jahn A, Nielsen PH (1998) Cell biomass and exopolymer composition in sewer biofims. Wat Sci Tech 37: 17–24

    Article  CAS  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59: 101–106

    Article  CAS  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamic: a novel mechanism of enzyme secretion. J Bacteriol 177: 3998–4008

    CAS  Google Scholar 

  • Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Pühler A, Ielpi L (1998) Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180: 1607–1617

    CAS  Google Scholar 

  • Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic Press, New York, pp 287–363

    Google Scholar 

  • Korber DR, Lawrence JR, Lappin-Scott HM, Costerton JW (1995) Growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 15–45

    Chapter  Google Scholar 

  • Kühl M, Jorgensen BB (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58: 1164–1174

    Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173: 6558–6567

    CAS  Google Scholar 

  • Lazarowa V, Manem J (1995) Biofilm characterization and activity analysis in water and wastewater treatment. Wat Res 29: 2227–2245

    Article  Google Scholar 

  • LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54: 2492–2499

    CAS  Google Scholar 

  • Leigh JA, Coplin DL (1992) Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol 46: 307–346

    Article  CAS  Google Scholar 

  • Leppard GG (1995) The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems. Sci Total Environ 165: 103–131

    Article  CAS  Google Scholar 

  • Leppard GG (1997) Colloidal organic fibrils of acid polysaccharides in surface waters: electron-optical characteristics, activities and chemical estimates of abundance. Colloids Surfaces A: Physicochem Eng Aspects 120: 1–15

    Article  CAS  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180: 5478–5483

    CAS  Google Scholar 

  • Lindberg B (1990) Components of bacterial polysaccharides. Adv Carbohydr Chem 48: 279–318

    Article  CAS  Google Scholar 

  • Lisle JT, Rose JB (1995) Gene exchange in drinking water and biofilms by natural transformation. Wat Sci Tech 31: 41–46

    Article  CAS  Google Scholar 

  • Liss SN, Droppo IG, Flannigan DT, Leppard GG (1996) Floc architecture in wastewater and natural riverine systems. Environ Sci Technol 30: 680–686

    Article  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58: 563–602

    CAS  Google Scholar 

  • Marshall KC (1996) Adhesion as a strategy for access to nutrients. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley, New York, pp 59–87

    Google Scholar 

  • Matsuyama T, Nakagawa Y (1996) Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Meth 25: 165–175

    Article  CAS  Google Scholar 

  • May TB, Chakrabarty AM (1994) Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol 2: 151–157

    Article  CAS  Google Scholar 

  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming H-C (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms (in press)

    Google Scholar 

  • McLean RJC, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154: 259–263

    Article  CAS  Google Scholar 

  • Mesnage S, Tosi-Couture E, Gounon P, Mock M, Fouet A (1998) The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthraces. J Bacteriol 180: 52–58

    CAS  Google Scholar 

  • Morris CE, Monier J-M, Jacques M-A (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63: 1570–1576

    CAS  Google Scholar 

  • Morton LHG, Greenway DLA, Gaylarde CC, Surman SB (1998) Consideration of some implications of the resistance of biofilms to biocides. Int Biodet Biodegr 41: 247–259

    Article  CAS  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60: 151–166

    CAS  Google Scholar 

  • Neu TR, Lawrence JR (1997) Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24: 11–25

    Article  CAS  Google Scholar 

  • Neu TR, Marshall KC (1990) Bacterial polymers: physicochemical aspects of their interaction at interfaces. J Biomaterials Applications 5: 107–133

    Article  CAS  Google Scholar 

  • Nielsen PH, Jahn A, Palmgren R (1997) Conceptual model for production and composition of exopolymers in biofilms. Wat Sci Tech 36: 11–19

    Article  CAS  Google Scholar 

  • Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60: 740–745

    CAS  Google Scholar 

  • Pasquier C, Marty N, Dournes J-L, Chabanon G, Pipy B (1997) Implication of neutral polysaccharides associated to alginate in inhibition of murine macrophage response to Pseudomonas aeruginosa. FEMS Microbiol Lett 147: 195–202

    Article  CAS  Google Scholar 

  • Peters G, Gray ED, Johnson GM (1989) Immunomodulating properties of extracellular slime substance. In: Bisno AL, Waldvogel FA (eds) Infections associated with indwelling medical devices. American Society for Microbiology, Washington, DC, pp 61–74

    Google Scholar 

  • Platt RM, Geesey GG, Davis JD, White DC (1985) Isolation and partial chemical analysis of firmly bound exopolysaccharide from adherent cells of a freshwater sediment bacterium. Can J Microbiol 31: 675–680

    Article  CAS  Google Scholar 

  • Priest FG (1992) Enzymes, extracellular. In: Lederberg J (ed) Encyclopedia of microbiology, vol 2. Academic Press, San Diego, pp 81–93

    Google Scholar 

  • Rehm BHA, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48: 281–288

    Article  CAS  Google Scholar 

  • Roberts IS (1995) Bacterial polysaccharides in sickness and in health. Microbiology 141: 2023–2031

    Article  CAS  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50: 285–315

    Article  CAS  Google Scholar 

  • Sidhu MS, Olsen I (1997) S-layers of Bacillus species. Microbiology 143: 1039–1052

    Article  CAS  Google Scholar 

  • Sleytr UB (1997) Basic and applied S-layer research: an overview. FEMS Microbiol Rev 20: 5–12

    Article  CAS  Google Scholar 

  • Smith SE, Simpson JA (1990) The contribution of Pseudomonas aeruginosa alginate to evasion of host defence. In: Gacesa P, Russell NJ (eds) (1990) Pseudomonas infection and alginates. Biochemistry, genetics and pathology. Chapman and Hall, London, pp 135–159

    Google Scholar 

  • Späth R, Flemming HC, Wuertz S (1998) Sorption properties of biofilms. Wat Sci Tech 37: 207–210

    Article  Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian sea-weeds. Biofouling 12: 227–244

    Article  Google Scholar 

  • Stickler DJ, Morris NS, McLean RJC, Fuqua C (1998) Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64: 3486–3490

    CAS  Google Scholar 

  • Sutherland IW (1977) Surface carbohydrates of the procaryotic cell. Academic Press, New York

    Google Scholar 

  • Sutherland IW (1982) Biosynthesis of microbial polysaccharides. Adv Microb Physiol 23: 79–150

    Article  CAS  Google Scholar 

  • Sutherland IW (1983) Microbial exopolysaccharides–their role in microbial adhesion in aqueous systems. CRC Crit Rev Microbiol 10: 173–201

    Article  CAS  Google Scholar 

  • Sutherland IW (1985) Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol 39: 243–270

    Article  CAS  Google Scholar 

  • Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotech Adv 12: 393–448

    Article  CAS  Google Scholar 

  • Sutherland IW (1996) Extracellular polysaccharides. In: Rehm H-J, Reed G (eds) Biotechnology, vol 6: products of primary metabolism. Chemie, Weinheim, pp 615–657

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16: 41–46

    Article  CAS  Google Scholar 

  • Swift S, Throup JP, Williams P, Salmond GPC, Stewart GSAB (1996) Quorum sensing: a population-density component in the determination of bacterial phenotype. Trends Biochem Sci 21: 214–219

    CAS  Google Scholar 

  • Takeda M, Nakano F, Nagase T, Iohara K, Koizumi J-I (1998) Isolation and chemical composition of the sheath of Sphaerotilus natans. Biosci Biotechnol Biochem 62: 1138–1143

    Article  CAS  Google Scholar 

  • Weiner R, Langille S, Quintero E (1995) Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind Microbiol 15: 339–346

    Article  CAS  Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34: 415–420

    Article  CAS  Google Scholar 

  • Whitfield C, Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 35: 1. 35–246

    Google Scholar 

  • Wimpenny JWT, Kinniment SL (1995) Biochemical reactions and the establishment of gradients within biofilms. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 99–117

    Chapter  Google Scholar 

  • Wimpenny JWT, Kinniment SL (1995) Biochemical reactions and the establishment of gradients within biofilms. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 99–117

    Chapter  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1998) In situ characterization of bio-film exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35: 213–223

    Article  CAS  Google Scholar 

  • Xun L, Mah RA, Boone DR (1990) Isolation and characterization of disaggregatase from Methanosarcina mazei LYC. Appl Environ Microbiol 56: 3693–3698

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wingender, J., Neu, T.R., Flemming, HC. (1999). What are Bacterial Extracellular Polymeric Substances?. In: Wingender, J., Neu, T.R., Flemming, HC. (eds) Microbial Extracellular Polymeric Substances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60147-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60147-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64277-7

  • Online ISBN: 978-3-642-60147-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics