Skip to main content

Physical Principles

  • Chapter
PET in Oncology

Abstract

Not long after P.A.M. Dirac predicted the existence of positrons in 1927, C. Anderson was able to prove they existed (1932). Soon people began to think about medical applications for positrons, since it was recognized that they had special properties for diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • Anger H (1963) Gamma-ray and positron scintillation camera. Nucleonics 21: 10–56

    Google Scholar 

  • Anger H, Davis D (1964) Gamma-ray detection efficiency and image resolution in sodium iodide. Rev Sci Instr 35: 693–697

    Article  CAS  Google Scholar 

  • Clack R, zDW T, Jeavons A (1984) Increased sensitivity and field of view for a rotating positron camera. Phys Med Biol 29: 1421–1431

    Article  PubMed  CAS  Google Scholar 

  • Dahlbom M, MacDonald L, Eriksson L, Paulus M, Andreaco M, Casey M, Moyers C (1997) Performance of a YSO/LSO detector block for use in a PET/SPECT system. IEEE Trans Nucl Sci 44: 1114–1119

    Article  CAS  Google Scholar 

  • Defrise M, Geissbuhler A, Townsend D (1994) A performance study of 3D reconstruction algorithms for positron emission tomography. Phys Med Biol 39: 305–320

    Article  PubMed  CAS  Google Scholar 

  • Defrise M, Kinahan P, Townsend D, Michel C, Sibomana M, Newport D (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imag 16: 145–158

    Article  CAS  Google Scholar 

  • Geagan M, Chase B, Muehllehner G (1994) Correction of distortions in a discontinous image. Nucl Instr and Meth A353: 379–383

    Google Scholar 

  • Hudson H, Larkin R (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 13: 601–609

    Article  CAS  Google Scholar 

  • Karp J, Muehllehner G, Mankoff D et al. (1990) Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 31: 617–627

    PubMed  CAS  Google Scholar 

  • Karp JS, Muehllehner G, Qu H, Yan X (1995) Singles transmission in volume-imaging PET with a 137 Cs source. Phys Med Biol 40: 929–944

    Article  PubMed  CAS  Google Scholar 

  • Kenny P (1971) Spatial resolution and count rate capacity of a positron camera: some experimental and theoretical considerations. Int J appl Radiat Isotopes 22: 21–28

    Article  Google Scholar 

  • Krauss O, Lorenz W, Luig H, Ostertag H, Schmidlin P (1970) Imaging properties of the positron camera. Nucl Med 9: 103–119

    CAS  Google Scholar 

  • Mankoff D, Muehllehner G, Miles G (1990) A local coincidence triggering system for PET tomographs composed of large-area positron-sensitive detectors. IEEE Trans Nucl Sci 37: 730–736

    Article  Google Scholar 

  • Muehllehner G (1975) Positron camera with extended counting rate capability. J Nucl Med 16: 653–657

    PubMed  CAS  Google Scholar 

  • Muehllehner G, Jaszczak R, Beck R (1974) The reduction of coincidence loss in radionuclide imaging cameras through the use of composite filters. Phys Med Biol 19: 504–510

    Article  PubMed  CAS  Google Scholar 

  • Muehllehner G, Colsher J, Lewitt R (1983) A hexagonal bar positron camera: problems and solutions. IEEE Trans Nucl Sci 30: 652–660

    Article  Google Scholar 

  • Muehllehner G, Karp J (1986) A positron camera using position-sensitive detectors: PENN-PET. J Nucl Med 27: 90–98

    PubMed  CAS  Google Scholar 

  • Paans A, Vaalburg W, Woldring M (1985) A rotating double-headed positron camera. J Nucl Med 26: 1466–1471

    PubMed  CAS  Google Scholar 

  • Shreve P, Steventon R, Deters E, Gross M, Wahl R (1997) FDG imaging of neoplasms using dual head SPECT camera operated in coincidence mode. Eur J Nucl Med, p 860

    Google Scholar 

  • Thompson C, Picard Y (1993) Two new strategies to increase the signal to noise ratio in positron volume imaging. IEEE Trans Nucl Sci 40: 956–961

    Article  CAS  Google Scholar 

  • Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss W-D (1992) Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 16: 804–813

    Article  PubMed  CAS  Google Scholar 

References

  1. Bailey, D. L. et al. ECAT-ART — a continuously rotating PET camera: performance characteristics, initial clinical studies and installation considerations in a nuclear medicine department. Eur. J. Nuc. med., Vol.14, No. 1, 1997

    Google Scholar 

  2. Nelleman, P.; Hines, H.; Braymer, W.; Muehllehner, G.; Geagan, M. Performance characteristics of a dual head SPECT scanner with PET capability. 1995 I.E.E.E. Nuclear Science Symposium and Medical Imaging Conference Record, October 21–28,1995, San Francisco

    Google Scholar 

  3. Phelps, M.E.; Cherry, S.R. The changing design of positron imaging systems. Clinical Positron Imaging Vol. 1, No. 1, 31–45, 1998

    Article  PubMed  Google Scholar 

  4. Anger, H. Gamma-ray and positron scintillation cameras. Nucleonics 21, 56–59, 1963

    Google Scholar 

  5. Brownell, G.; Burnham, C. A multi-crystal positron camera. I.E.E.E. Trans. Nucl. Sci. NS-19: 201–205, 1972

    Google Scholar 

  6. Muehllehner, G. Positron camera with extended counting rate capability, Jour. Nucl. Med. Vol. 16, No. 7, 653–657, 1975

    CAS  Google Scholar 

  7. Karp, J.S.; Muehllehner, G.; Beerbohm, D.; Mankoff, D.A. Event localization in a continous scintillation detector using digital processing I.E.E.E. Trans. NS-33, 550–555, 1986

    Google Scholar 

  8. Karp, J.S.; Mankoff, D.A.; Muehllehner, G. A position-sensitive detector for use in positron emission tomography. Nucl. Instr. Meth. A273, 891–897, 1988

    CAS  Google Scholar 

  9. Muehllehner, G.; Karp, J.S.; Mankoff, D.A.; Beerbohm, D.; Ordonez, C.E. Design and performance of a new positron tomograph. I.E.E.E. Trans. Vol. 35, No. 1,670–674, 1988

    CAS  Google Scholar 

  10. Mankoff, D.A.; Muehllehner, G.; Karp, J.S. The high count rate performance of a two-dimensionally position-sensitive detector for positron emission tomography. Phys. Med. Biol., Vol. 34, No. 4, 437–456,

    Google Scholar 

  11. Mankoff, D.A.; Muehllehner, G.; Miles, G.E. A local coincidence triggering system for PET tomographs composed of large area position-sensitive detectors. I.E.E.E. Trans., Vol. 37, No. 2, 730–736, 1990

    Google Scholar 

  12. Bengel et. al. Europ. J. Nuc. Med. No. 24, 1091–1098, 1997

    CAS  Google Scholar 

  13. Imran et. al. J. Nuc. Med. No. 39, 1219–1223, 1998

    CAS  Google Scholar 

References

  1. Bailey D (1997) A comparison of reconstructions from the UK PET Centers. UK PET Special Interest Group (http://www-pet.umds.ac.uk/UKPET/) In: CTI PET Systems Inc; ECAT Technical Users Meeting, Dresden

    Google Scholar 

  2. Bildbeispiele zur standardisierten nuklearmedizinischen Bilddokumentation. Ergebnisse der Arbeitsgemeinschaft Standardisierung der Deutschen Gesellschaft für Nuklearmedizin. Nuklearmedizin 1997, 34, Technische Mitteilungen in Heft 7: 53–54

    Google Scholar 

  3. DIN 6848–1 Kennzeichnung von Darstellungen in der medizinischen Diagnostik. Beuth, Berlin 1992

    Google Scholar 

  4. DIN 6848–2 Kennzeichnung von Darstellungen in der medizinischen Diagnostik; Nuklearmedizinische Untersuchungen von Körperproben. Beuth, Berlin 1994

    Google Scholar 

  5. DIN 6855–1 Qualitätsprüfung nuklearmedizinischer Meßsysteme; In-vivo- und in vitro-Meßplätze. Beuth, Berlin 1992

    Google Scholar 

  6. DIN 6855–2 Qualitätsprüfung nuklearmedizinischer Meßsysteme; Meßbedingungen für die Einzelphotonen-Emissions-Tomographie mit Hilfe rotierender Meßköpfe einer Gamma-Kamera. Beuth, Berlin 1993

    Google Scholar 

  7. DIN 6855–11 Qualitätsprüfung nuklearmedizinischer Meßsysteme — Teil 11: Konstanzprüfung von Aktivime-tern. Beuth, Berlin 1997

    Google Scholar 

  8. DIN 6878–1 Digitale Archivierung von Bildern in der medizinischen Radiologie — Teil 1: Allgemeine Anforderungen an die digitale Archivierung von Bildern. Beuth, Berlin 1998

    Google Scholar 

  9. DIN 55350–11 Begriffe zu Qualitätsmanagement und Statistik — Teil 11: Begriffe des Qualitätsmanagements. Beuth, Berlin 1995

    Google Scholar 

  10. DIN EN ISO 8402 und Beiblatt 1 Qualitätsmanagement -Begriffe. Beuth, Berlin 1995

    Google Scholar 

  11. DIN IEC 62 C/119/CDV (Norm-Entwurf) Merkmale und Prüfbedingungen für bildgebende Systeme in der Nuklearmedizin — Teil 1: Positronen-Emissions-Tomographie. Beuth, Berlin 1995

    Google Scholar 

  12. DIN IEC 62 C/120/CDV (Norm-Entwurf) Merkmale und Prüfbedingungen für bildgebende Systeme in der Nuklearmedizin — Teil 2: Einzelphotonen-Emissions-Tomographie. Beuth, Berlin 1996

    Google Scholar 

  13. Doll J, Zaers J, Trojan H, Bellemann ME, Adam LE, Haberkorn U, Brix G (1998) Optimierung der Bildqualität von PET-Aufnahmen durch 3D-Datenakquisition und iterative Bildrekonstruktion. Nuklearmedizin 37: 62–67

    PubMed  CAS  Google Scholar 

  14. Forstrom LA, Dunn WL, O’Conner MK, Decklever TD, Hardyman TJ, Howarth DM (1996) Technical pitfalls in image acquisition, processing, and display. Semin Nucl Med 26: 278–294

    Article  PubMed  CAS  Google Scholar 

  15. Geworski L, Reiners C (1995) Qualitätskontrolle nuklearmedizinischer Meßsysteme. Schattauer, Stuttgart

    Google Scholar 

  16. Hoffmann J (1997) Extending detector life. In: CTI PET Systems Inc; ECAT Technical Users Meeting, Dresden 1997

    Google Scholar 

  17. Jordan K, Knoop B, Harke H (1994) Qualitätssicherung nuklearmedizinischer Meßsysteme: Was sagen die neuen Vorschriften? Nuklearmedizin 33: 49–60

    Google Scholar 

  18. Kemmer W, Johnke G (1992) Neufassung der Richtlinie Strahlenschutz in der Medizin, 2. Aufl. Hoffmann, Berlin

    Google Scholar 

  19. Keyes JW Jr (1995) SUV: Standard uptake or silly useless value? J Nucl Med 36: 1836–1839

    PubMed  Google Scholar 

  20. Konsensus — Onko-PET. 2. Empfehlung des Arbeitsausschusses Positronen-Emissions-Tomographie der Deutschen Gesellschaft für Nuklearmedizin. Nuklearmedizin 1997, 34, DGN-Nachrichten in Heft 8: 45–46

    Google Scholar 

  21. Maßnahmen zur Qualitätssicherung der Meßgeräte und Radiopharmaka gemäß Richtlinie Strahlenschutz. Mitteilung des Arbeitsausschusses Leistungserfassung der Deutschen Gesellschaft für Nuklearmedizin. Nuklearmedizin 1993, 32: 273–274

    Google Scholar 

  22. Mester J, Bohuslavizki KH, Clausen M, Henze E (1997) Empfehlungen zur Standardisierung nuklearmedizinischer Bilddokumentationen. Nuklearmediziner 20: 197–199

    Google Scholar 

  23. Molecular coincidence detection quality assurance. Technical information from ADAC Laboratories GmbH, 1998

    Google Scholar 

  24. Müller-Schauenburg W, Bares R, Burchert W, Lietzen-Mayer R, Dohmen BM (1997) Prozeduren in der klinischen Nuklearmedizin — Wie ist eine Konvergenz der Methodenvielfalt über die nächsten Jahre erreichbar? Nuklearmediziner 20: 147–152

    Google Scholar 

  25. O’Conner MK (1996) Instrument- and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med 26: 256–277

    Article  Google Scholar 

  26. Parker JA, Yester MV, Daube-Witherspoon ME, Todd-Pokropek AE, Royal HJ (1996) Procedure guideline for general imaging: 1.0. J Nucl Med 37: 2087–2092

    PubMed  CAS  Google Scholar 

  27. Performing the daily check pocedure for PET sanners. Technical information from CTI PET Systems Inc, 1998

    Google Scholar 

  28. Performing the daily check procedure for PET scanners. Technical information from GE Medical Systems Inc, 1998

    Google Scholar 

  29. Roedler HD (1993) Qualitätskontrolle nuklearmedizinischer Meßgeräte. Z Med Phys 3: 110–115

    Google Scholar 

  30. Ruprecht TM (1997) Gewährleistung und systematische Weiterentwicklung der Qualität im Gesundheitswesen. Entschließung der Länderkonferenz für das Gesundheitswesen am 21.11.1996 in Cottbus. Quali Med 5: 41–48

    Google Scholar 

  31. Sandeil A, Ohlsson T, Erlandsson K, Strand SE (1998) An alternative method to normalize clinical FDG studies. J Nucl Med 39: 552–555

    Google Scholar 

  32. Schelbert HR, Hoh CK, Royal HD et al. (1997) Procedure guideline for tumor imaging using F-18 FDG. (http://www.snm.org/guide.html) SNM

    Google Scholar 

  33. Schneider A (1997) Qualitätsmanagement im Gesundheitswesen per Gesetz. Quali Med 5: 3–7

    Google Scholar 

  34. Schober O, Brandau W, Henze E et al. (1994) Nuklearmedizinische In-vivo-Untersuchungen. 2. Empfehlung des Arbeitsausschusses Klinische Qualitätskontrolle der Deutschen Gesellschaft für Nuklearmedizin. Schattauer, Stuttgart

    Google Scholar 

  35. Townsend DW (1996) Quality Control of PET Scanners. Eight Annual International PET Conference; Lake Buena Vista, Florida

    Google Scholar 

  36. Vollet B, Petrusch P, Sciuk J, Brandau W, Schober O (1994) Optimierung der Farb- und Grauwert-Dokumentation in der medizinischen Bildgebung mit digitaler Laser-Technologie. Zentralbl Radiol 150: 277

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Newiger, H., Hämisch, Y., Oehr, P., Ruhlmann, J., Vollet, B., Ziegler, S. (1999). Physical Principles. In: Ruhlmann, J., Oehr, P., Biersack, HJ. (eds) PET in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60010-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60010-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64220-3

  • Online ISBN: 978-3-642-60010-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics