Skip to main content

Determination of Afterload: A Challenge for Echocardiography?

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2001

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 2001 ((YEARBOOK,volume 2001))

Abstract

Hemodynamic monitoring is often confined to pressure measurements and determination of cardiac output. Although the merits of these measures cannot be denied, currently available hemodynamic monitoring permits an approach that allows measurement of the different features of the Frank-Starling mechanism: contractility, preload and afterload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorcsan J, Morita S, Mandarino W, et al (1993) Two-dimensional echocardiographic automated border detection accurately reflects changes in left ventricular volume. J Am Soc Echocardiogr 6:482–489

    PubMed  Google Scholar 

  2. Schmidt C, Roosens C, Struys M, et al (1999) Contractility in humans after coronary artery surgery. Anesthesiology 91:58–70

    Article  PubMed  CAS  Google Scholar 

  3. Milnor W (1990) Properties of cardiac cells. In: Milnor W (ed) Cardiovascular Physiology. Oxford University Press, Oxford, pp 62–102

    Google Scholar 

  4. Milnor W (1990) The heart as a pump. In: Milnor W (ed) Cardiovascular Physiology. Oxford University Press, Oxford, pp 111–139

    Google Scholar 

  5. Little W, Braunwald E (1997) Assessment of cardiac function. In: Braunwald E (ed) Heart Disease: A Textbook of Cardiovascular Medicine, 5th edn. W.B. Saunders Company, New York, pp 421–444

    Google Scholar 

  6. Kelly R, Ting C, Yang T, et al (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521

    PubMed  CAS  Google Scholar 

  7. Milnor W (1975) Arterial impedance as ventricular afterload. Circ Res 36:565–570

    PubMed  CAS  Google Scholar 

  8. Hettrick D, Pagel P, Warltier D (1995) Differential effects of isoflurane and halothane on aortic input impedance quantified using a three-element windkessel model. Anesthesiology 83: 361–373

    Article  PubMed  CAS  Google Scholar 

  9. Sharp K, Pantalos G, Minich L, Tani L, McGough E, Hawkins J (2000) Aortic input impedance in infants and children. J Appl Physiol 88:2227–2239

    PubMed  CAS  Google Scholar 

  10. Wesseling K, Jansen J, Settels J, Schreuder J (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74:2566–2573

    PubMed  CAS  Google Scholar 

  11. Stergiopulos N, Segers P, Westerhof N (1999) Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol 276: H424–H428

    PubMed  CAS  Google Scholar 

  12. Segers P, Verdonck P, Deryck Y, et al (1999) Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection. Ann Biomed Eng 27:480–485

    Article  PubMed  CAS  Google Scholar 

  13. Molino P, Cerutti C, Julien C, Cuisinaud G, Gustin M, Paultre C (1998) Beat-to-beat estimation of windkessel model parameters in conscious rats. Am J Physiol 274:H171–H177

    PubMed  CAS  Google Scholar 

  14. Segers P, Steendijk P, Stergiopulos N, Westerhof N (2001) Predicting systolic and diastolic aortic blood pressure and stroke volume in the intact sheep. J Biomech (in press)

    Google Scholar 

  15. Poelaert J, Schmidt C, Van Aken H, Hinder F, Mollhoff T, Loick H (1999) A comparison of trans-oesophageal achocardiographic doppler across the aortic valve and the thermodilution technique for estimating cardiac output. Anaesthesia 54:128–136

    Article  PubMed  CAS  Google Scholar 

  16. Darmon P, Hillel Z, Mogtader A, Mindich B, Thys D (1994) Cardiac output by transesophageal echocardiography using continuous-wave doppler across the aortic valve. Anesthesiology 80: 796–805

    Article  PubMed  CAS  Google Scholar 

  17. Declerck C, Hillel Z, Shih H, Kuroda M, Connery C, Thys D (1998) A comparison of left ventricular performance indices measured by transoesophageal echocardiography with automated border detection. Anesthesiology 89:341–349

    Article  PubMed  CAS  Google Scholar 

  18. Atkins B, Silvestry S, Davis J, Kisslo J, Glower D (1999) Means of load variation during echocardiographic assessment of the Frank-Starling relatioship. J Am Soc Echocardiogr 12:792–800

    Article  PubMed  CAS  Google Scholar 

  19. Nichols W, Conti C, Walker W, Milnor W (1977) Input impedance of the systemic circulation in man. Circ Res 40:451–458

    PubMed  CAS  Google Scholar 

  20. Murgo J, Westerhof N, Giolma J, Altobelli S (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116

    PubMed  CAS  Google Scholar 

  21. Langewouters G, Wessehng K, Goedhard W (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 17: 425–435

    Article  PubMed  CAS  Google Scholar 

  22. Sunagawa K, Sagawa K, Maughan W (1984) Ventricular interaction with the loading system. Ann Biomed Eng 12:163–189

    Article  PubMed  CAS  Google Scholar 

  23. Kass D, Kelly R (1992) Ventriculo-arterial couphng: concepts, assumptions, and apphcations. Ann Biomed Eng 20:41–62

    Article  PubMed  CAS  Google Scholar 

  24. Hettrick D, Pagel P, Warltier D (1997) Alterations in canine left ventricular-arterial coupling and mechanical efficiency produced by propofol. Anesthesiology 86:1088–1093

    Article  PubMed  CAS  Google Scholar 

  25. Deryck Y, Brimouille S, Maggiorini M, de Canniere D, Naeije R (1996) Systemic vascular effects of isoflurane versus propofol anesthesia in dogs. Anesth Analg 83:958–964

    PubMed  CAS  Google Scholar 

  26. Hettrick D, Pagel P, Warltier D (1996) Desflurane, sevoflurane, and isoflurane impair canine left ventricular-arterial coupling and mechanical efficiency. Anesthesiology 85:403–413

    Article  PubMed  CAS  Google Scholar 

  27. Shih H, Hillel Z, Declerck C, Anagnostopoulos C, Kuroda M, Thys D (1997) An algorithm for real time, continuous evaluation of left ventricular mechanics by single-beat estimation of arterial and ventricular elastance. J Clin Monit 13:157–170

    Article  PubMed  CAS  Google Scholar 

  28. Van Gorp A, Van Ingen Schenau D, Willigers J, et al (1996) A technique to assess aortic distensibility and compliance in anesthetized and awake rats. Am J Physiol 270: H780–H786

    PubMed  Google Scholar 

  29. Cholley B, Shroff S, Korcarz C, Lang R (1996) Aortic elastic properties with transoesophageal echocardiography with automated border detection: vahdation according to regional differences between proximal and distal descending thoracic aorta. J Am Soc Echocardiogr: 539–548

    Google Scholar 

  30. Langewouters G, Wesseling K, Goedhard W (1985) The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five component model. J Biomech 18:613–620

    Article  PubMed  CAS  Google Scholar 

  31. Cholley B, Lang R, Berger D, Korcarz C, Payen D, Shroff S (1995) Aherations in systemic arterial mechanical properties during septic shock: role of fluid resuscitation. Am J Physiol 269: H375–H384

    PubMed  CAS  Google Scholar 

  32. Hayashi K (1993) Experimental approaches on measuring the mechanical properties and constutive laws of arterial walls. J Biomech Eng 115:481–488

    Article  PubMed  CAS  Google Scholar 

  33. Liu Z, Brin K, Yin F (1988) Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Physiol 251: H588–H600

    Google Scholar 

  34. Stefanadis C, Dernellis J, Tsiamis E, Diamantopoulos L, Michaelides A, Toutouzas P (2000) Assesment of aortic hne of elasticity using polynomial regression analysis. Circulation 101: 1819–1825

    PubMed  CAS  Google Scholar 

  35. Reichek N, Wilson J, St John Sutton M, Plappert T, Goldberg S, Hirshfeld J (1982) Noninvasive determination of left ventricular end-systolic stress: vahdation of the method and initial application. Circulation 65:99–108

    Article  PubMed  CAS  Google Scholar 

  36. Grossman W, Jones D, Mc Laurin L (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64

    Article  PubMed  CAS  Google Scholar 

  37. Douglas P, Reichek N, Plappert T, Muhammad A, St John Sutton M (1987) Comparison of echocardiographic methods for measurement of left ventricular shortening and wall stress. J Am Coll Cardiol 9:945–949

    Article  PubMed  CAS  Google Scholar 

  38. Lang R, Borow K, Neumann A, Janzen D (1986) Systemic vascular resistance: an unrehable index of left ventricular afterload. Circulation 74:1114–1123

    Article  PubMed  CAS  Google Scholar 

  39. Greim C, Roewer N, Schulte J (1995) Assessment of changes in left ventricular wall stress from the end-systolic pressure-area product. Br J Anaesth 75:583–587

    PubMed  CAS  Google Scholar 

  40. Poortmans G, Poelaert J (1999) Transesophageal echocardiographic evaluation of left ventricular function. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp 468–481

    Google Scholar 

  41. Schmidt C, Hinder F, Van Aken H, Möllhoff T, Poelaert J (2000) Evaluation of global left ventricular systohc function. In: Poelaert J, Skarvan K (eds) Transoesophageal Echocardiography in Anaethesia. BMJ Books, London, pp 37–54

    Google Scholar 

  42. Greim C, Roewer N, Meissner C, Bause H, Schulte J (1995) Abschätzung akuter linksventrikulä-rer Nachlaständerungen. Anaesthesist 44:108–115

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heerman, J., Roosens, C., Poelaert, J. (2001). Determination of Afterload: A Challenge for Echocardiography?. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2001. Yearbook of Intensive Care and Emergency Medicine 2001, vol 2001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59467-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59467-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41407-0

  • Online ISBN: 978-3-642-59467-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics