Skip to main content

Operator Dependent Interpolation in Algebraic Multigrid

  • Conference paper
Book cover Multigrid Methods V

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 3))

Abstract

Algebraic multigrid (AMG) methods are based on algebraically defined multigrid components of which, in particular, a proper definition of interpolation is important for obtaining fast and robust convergence. This is because AMG convergence crucially depends on how well the range of interpolation approximates the range of the smoothing operator used. On the basis of various experiments, we will demonstrate the dependency of convergence on the interpolation operator. A simple improvement by means of a Jacobi relaxation step, applied to the interpolation, is shown to considerably enhance convergence and robustness. Relaxation of interpolation can also be used to improve the performance of algebraic multigrid approaches which are based on accelerated coarsening strategies. Finally, in a parallel environment, the use of local relaxation of interpolation (only along processor boundaries) may be used to stabilize convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson, O.; Vassilevski, P.S.: Algebraic multilevel preconditioning methods I, Num. Math. 56, 157–177, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  2. Axelsson, O.; Vassilevski, P.S.: Algebraic multilevel preconditioning methods II, SIAM Numer. Anal. 27, 1569–1590, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  3. Braess, D.: Towards Algebraic Multigrid for Elliptic Problems of Second Order, Computing 55, 379–393, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandt, A.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Arbeitspapiere der GMD 85, 1984.

    Google Scholar 

  5. Brandt, A.: Algebraic multigrid theory: the symmetric case, Procs. of the International Multigrid Conference, Copper Mountain, Colorado, 1983.

    Google Scholar 

  6. Chan, T.; Zikatanov, L.; Xu, J.: Agglomeration strategy for unstructured grids, AMLI′96, Proceedings of the Conference on “Algebraic Multilevel Iteration Methods with Applications” (Axelsson, O.; Polman, B. eds.), Nijmegen, June 13–15, 1996.

    Google Scholar 

  7. Chang, Q.; Wong, Y.S,; Fu, EL: On the algebraic multigrid method, J. Comp. Phys. 125, 279–292, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahmen, W.; Eisner, L.: Algebraic multigrid methods and the Schur complement, Notes on Numerical Fluid Mechanics 23, Vieweg Verlag, 1988.

    Google Scholar 

  9. Fuhrmann, J.: Outlines of a modular algebraic multilevel method, ISSN 0946–8633, Weierstras-Institut für Angewandte Analysis und Stochastik, Berlin, 1995.

    Google Scholar 

  10. Grauschopf, T.; Griebel, M.; Regler, H.: Additive multilevel-preconditioners based on bilinear interpolation, matrix dependent geometric coarsening and algebraic multigrid coarsening for second order elliptic PDEs, TUM-19602, SFB-Bericht Nr. 342/02/96 A, Institut für Informatik, Technische Universität München, 1996.

    Google Scholar 

  11. Griebel, M.; Neunhoeffer, T.; Regler, H.: Algebraic multigrid methods for the solution of the Navier-Stokes equations in complicated geometries, SFB-Bericht Nr. 342/01/96 A, Institut für Informatik, Technische Universität München, 1996.

    Google Scholar 

  12. Lonsdale, R.D.: An algebraic multigrid solver for the Navier-Stokes equations on unstructured meshes, Int. J. Num. Meth. Heat Fluid Flow 3, 3–14, 1993.

    Article  Google Scholar 

  13. Oosterlee, C.W.; Washio, T.: An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems, to appear: SIAM SISC. Also available as: Arbeitspapiere der GMD, No. 980, 1996.

    Google Scholar 

  14. Raw, M.: A coupled algebraic multigrid method for the 3D Navier-Stokes equations, Advanced Scientific Computing Ltd., 554 Parkside Drive, Waterloo, Ontario N2L 5Z4, Canada.

    Google Scholar 

  15. Reusken, A.A.: A multigrid method based on incomplete Gaussian elimination, Eindhoven University of Technology, Report RANA 95-13, ISSN 0926–4507, 1995.

    Google Scholar 

  16. Ritzdorf, H.; Stuben, K.: Adaptive multigrid on distributed memory computers, Multigrid Methods IV (Hemker, P.W.; Wesseling, P., eds.), Birkhäuser Verlag, p. 77, 1993.

    Google Scholar 

  17. Robinson, G.: Parallel computational fluid dynamics on unstructured meshes using algebraic multigrid, Parallel Computational Fluid Dynamics 92 (Pelz, R.B.; Ecer, A.; Häuser, J. eds.), Elsevier Science Publishers B.V., 1993.

    Google Scholar 

  18. Ruge, J.W.; Stüben, K.: Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG), Multigrid Methods for Integral and Differential Equations (Paddon, D.J.; Holstein H.; eds.), The Institute of Mathematics and its Applications Conference Series, New Series Number 3, pp. 169–212, Clarenden Press, Oxford, 1985.

    Google Scholar 

  19. Ruge, J.W.; Stüben, K.: Algebraic Multigrid (AMG), In “Multigrid Methods” (McCormick, S.F., ed.), SIAM, Frontiers in Applied Mathematics, Vol 5, Philadelphia, 1986.

    Google Scholar 

  20. Stüben, K.: Algebraic multigrid (AMG): Experiences and comparisons, Appl. Math. Comp. 13, pp. 419–452, 1983.

    Article  MATH  Google Scholar 

  21. Vanek, P.; Mandel, J.; Brezina, M.: Algebraic multigrid on unstructured meshes, University of Colorado at Denver, UCD/CCM Report No 34, 1994.

    Google Scholar 

  22. Webster, R.: An algebraic multigrid solver for Navier-Stokes problems in the discrete second order approximation, Int. J. Num. Meth. in Fluids 22, 1103–1123, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wesseling, P.: An Introduction to Multigrid Methods, John Wiley, Chichester, 1992

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krechel, A., Stüben, K. (1998). Operator Dependent Interpolation in Algebraic Multigrid. In: Hackbusch, W., Wittum, G. (eds) Multigrid Methods V. Lecture Notes in Computational Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58734-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58734-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63133-0

  • Online ISBN: 978-3-642-58734-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics