Skip to main content

Simulation of Oxygen Isotopes in a Global Ocean Model

  • Chapter
Use of Proxies in Paleoceanography

Abstract

We incorporate the oxygen isotope composition of seawater δ18Ow into a global ocean model that is based on the Modular Ocean Model (MOM, version 2) of the Geophysical Fluid Dynamics Laboratory (GFDL). In a first experiment, this model is run to equilibrium to simulate the present-day ocean; in a second experiment, the oxygen isotope composition of Antarctic Surface Water (AAS W) is set to a constant value to indirectly account for the effect of sea-ice. We check the depth distribution of δ18Ow against observations. Furthermore, we computed the equilibrium fractionation of the oxygen isotope composition of calcite δ18Oc from a paleotemperature equation and compared it with benthic foraminiferal δ18O. The simulated δ18Ow distribution compares fairly well with the GEOSECS data. We show that the δ18Ow values can be used to characterize different water masses. However, a warm bias of the global ocean model yields δ18Oc values that are too light by about 0.5 %o above 2 km depth and exhibit a false vertical gradient below 2 km depth. Our ultimate goal is to interpret the wealth of foraminiferal δ18O data in terms of water mass changes in the paleocean, e.g. at the Last Glacial Maximum (LGM). This requires the warm bias of the global ocean model to be corrected. Furthermore the model must probably be coupled to simple atmosphere and sea-ice models such that neither sea-surface salinity (SSS) nor surface δ18Ow need to be prescribed and the use of present-day δ18Ow-salinity relationships can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauch D (1995) The Distribution of δ18O in the Arctic Ocean: Implications for the Freshwater Balance of the Halocline and the Sources of Deep and Bottom Waters. Ber Polarforsch Bremerhaven 159, pp 1–144

    Google Scholar 

  • Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13:150–160

    Article  Google Scholar 

  • Bickert T (1992) Rekonstruktion der spätquartären Bodenwasserzirkulation im Östlichen Südatlantik über stabile Isotope benthischer Foraminiferen. Ber Fachber Geowiss Univ Bremen 27, pp 1–205

    Google Scholar 

  • Birchfield GE (1987) Changes in deep-ocean water δ18O and temperature from the last glacial maximum to the present. Paleoceanography 2:431–442

    Article  Google Scholar 

  • Boyle EA, Keigwin L (1987) North Atlantic thermohaline circulation during the last 20,000 years: Link to high-latitude surface temperature. Nature 330: 35–40

    Article  Google Scholar 

  • Broecker WS (1986) Oxygen isotope constraints on surface ocean temperatures. Quat Res 26:121–134

    Article  Google Scholar 

  • Broecker WS (1989) The salinity contrast between the Atlantic and Pacfic oceans during glacial time. Paleoceanography 4:207–212

    Article  Google Scholar 

  • Bryan K (1984) Accelerating the convergence to equilibrium of ocean climate models. J Phys Oceanogr 14:666–673

    Article  Google Scholar 

  • Bryan K, Lewis L J (1979) A water mass model of the world ocean circulation. J Geophys Res 84:2503–2517

    Article  Google Scholar 

  • Cane MA (1986) Introduction to ocean modeling. In: O’Brien JJ (ed) Advanced Physical Oceanographic Modelling. NATO ASI Series C 186, Reidel, Dordrecht, pp 5–21

    Google Scholar 

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Isotopic oceanography: Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Proceedings of the Third Spoleto Conference. Consiglio Nazionale Delle Ricerche, pp 9–130

    Google Scholar 

  • Curry WB, Duplessy JC, Labeyrie LD, Shackleton NJ (1988) Changes in the distribution of δ13C of deep water CO2 between the last glaciation and the holocene. Paleoceanography 3:317–341

    Article  Google Scholar 

  • Danabasoglu G, McWilliams JC (1995) Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J Climate 8:2967–2987

    Article  Google Scholar 

  • Danabasoglu G, McWilliams JC, Large WG (1996). Approach to equilibrium in accelerated global oceanic models. J Climate 9:1092–1110

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie LD, Oppo D, Kallel N (1988) Deepwate. source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3: 343–360

    Google Scholar 

  • Duplessy JC, Labeyrie LD, Juillet-Leclerc A, Maitre F, Duprat J, Sarnthein M (1991) Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanol Acta 14:311–324

    Google Scholar 

  • Emery WJ, Meincke J (1986) Global water masses: summary and review. Oceanol Acta 9:383–391

    Google Scholar 

  • Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031

    Article  Google Scholar 

  • Fairbanks RG, Charles CD, Wright JD (1992) Origin of global meltwater pulses. In: Taylor RE (ed) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 473–500

    Chapter  Google Scholar 

  • Fanning AF, Weaver A J (1996) An atmospheric energy-moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model. J Geophys Res 101 (D10): 15,111–15,128

    Article  Google Scholar 

  • Garzoli SL, Gordon AL (1996) Original and variability of the Benguela Current. J Geophys Res 101: 897–906

    Article  Google Scholar 

  • Gat JR (1996) Oxygen and Hydrogen isotopes in the hydrologic cycle. Ann Rev Earth Planet Sci 24: 225–262

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-Ocean Dynamics. International Geophys Series 20, Academic Press, San Diego

    Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20: 150–155

    Article  Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536

    Article  Google Scholar 

  • Gordon AL, Lutjeharms JRE, Grundlingh ML (1987) Stratification and circulation at the Agulhas Retroflection. Deep-Sea Res 34:565–599

    Article  Google Scholar 

  • Gould WJ, Loynes J, Backhaus J (1985) Seasonality in slope current transports northwest of Shetland. Technical Report 7, ICES, Hydrography Commitee, pp l–13

    Google Scholar 

  • Hoffmann G (1995) Stabile Wasserisotope im allgemeinen Zirkulationsmodell ECHAM. Dissertation, Univ Hamburg, pp 1–99

    Google Scholar 

  • Hoffmann G, Heimann M (1993) Water tracers in the ECHAM general circulation model. In: International Atomic Energy Agency (ed) Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere

    Google Scholar 

  • Jacobs SS, Fairbanks RG, Horibe Y (1985) Origin and evolution of water masses near the antarctic continental margin. In: Oceanology of the Antarctic Continental Shelf, Ant Res Ser 43:59–85

    Article  Google Scholar 

  • Joussaume S, Jouzel J (1993) Paleoclimatic tracers: an investigaton using an Atmospheric General Circulation Model under Ice Age conditions. 2. Water isotopes. J Geophys Res 98:2807–2830

    Article  Google Scholar 

  • Joussaume S, Sadourny R, Jouzel J (1984) A general circulation model of water isotope cycles in the atmosphere. Nature 311:24–29

    Article  Google Scholar 

  • Jouzel J (1986) Isotopes in cloud physics: Multiphase and multistage condensation processes. In: Fritz P, Fontes JC (eds) The Terrestrial Environmont, Handbook of Environmental Isotope Geochemistry. Elsevier, New York, 2, pp 61–112

    Google Scholar 

  • Jouzel J, Russel GL, Suozzo RJ, Koster RD, White JWC, Broecker WS (1987) Simulations of the HDO and H2 18O atmospheric cycles using the NASA GISS General Circulation Model: the seasonal cycle for present-day conditions. J Geophys Res 92: 14,739–14,760

    Article  Google Scholar 

  • Juillet-Leclerc A, Jouzel J, Labeyrie LD, Joussaume S (1997) Modern and last glacial maximum sea surface δ18O derived from an Atmospheric General Circulation Model. Earth Planet Sci Lett 146:591–605

    Article  Google Scholar 

  • Jung SJA (1996) Wassermassenaustausch zwischen NE-Atlantik und dem Nordmeer während der letzten 300000/80000 Jahre im Abbild stabiler O-und C-Iso-tope. PhD Thesis, Univ Kiel, pp 1–104

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Leetma A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77: 437–471

    Article  Google Scholar 

  • Knauss J (1969) A note on the transport of the Gulf Stream. Deep-Sea Res 16:117–124

    Google Scholar 

  • Labeyrie LD, Duplessy JC, Duprat J, Juillet-Leclerc A, Moyes J, Michel E, Kallel N, Shackleton NJ (1992) Changes in the vertical structure of the North Atlantic ocean between glacial and modern times. Quat Sci Rev 11:401–413

    Article  Google Scholar 

  • Landau LD, Lifschitz EM (1987) Fluid Mechanics (2nd ed). Pergamon, Oxford, pp 1–539

    Google Scholar 

  • Large WG., Danabasoglu G, Doney SC, Mc Williams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J Phys Oceanogr 27:2418–2447

    Article  Google Scholar 

  • Larsen JC (1992) Transport and heat flux of the Florida Current at 27° N derived from cross-stream voltages and profiling data: Theory and observations. Philos Trans R Soc London A338:169–236

    Article  Google Scholar 

  • Lehman SJ, Wright DG, Stocker TF(1993) Transport of freshwater into the deep ocean by the conveyor. In: Peltier WR (ed) Ice in the Climate System. NATO ASI Series I: Global Environmental Change, Vol 12, Springer, Berlin Heidelberg New York, pp 187–209

    Chapter  Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean. NOAA Prof Pap 13, pp 1–173

    Google Scholar 

  • Levitus S, Boyer TP (1994) World Ocean Atlas Volume 4: Temperature. NOAA Atlas NESDIS 4, pp 1–117

    Google Scholar 

  • Levitus S, Russell B, Boyer TP (1994) World Ocean Atlas. Volume 3: Salinity. NOAA Atlas NESDIS 3, pp 1–99

    Google Scholar 

  • Mackensen A, Hubberten HW, Scheele N, Schlitzer R (1996) Decoupling of δ13C∑CO2 and phosphate in Recent Weddel Sea deep and bottom water: Implications for glacial Southern Ocean paleoceanography. Paleoceanography 11:203–215

    Article  Google Scholar 

  • Mathieu R(1996) GENESIS ∑. A Water Molecule Stable Isotopes and Tracers Version of the GENESIS Global Climate Model Version 2.0. Model Description. Interdisciplinary Climate System Section, CGD, NCAR, Boulder, Colorado. Institute of Alpine and Arctic Research, Univ Colorado, Boulder, pp 1–19

    Google Scholar 

  • McCorkle DC, Keigwin LD (1994) Depth profiles of δ13C in bottom water and core top C. wuellerstorfi on the Ontong Java Plateau and Emperor Seamounts. Paleoceanography 9:197–208

    Article  Google Scholar 

  • McGuffie K, Henderson-Sellers A (1996) A Climate Modelling Primer (2nd ed). J Wiley & Sons, Chichester, pp 1–253

    Google Scholar 

  • Mikolajewicz U (1998) A meltwater induced collapse of the ‘conveyor belt’ thermohaline circulation and its influence on the distribution of 14C and δ18O in the oceans. J Geophys Res, in press

    Google Scholar 

  • NCAR Data Support Section (1986) NGDC ETOP05 global ocean depth & land elevation, 5-min. Data Set 759.1, NCAR, Boulder, Colorado, pp

    Google Scholar 

  • NCAR Oceanography Section (1996) The NCAR CSM ocean model. NCAR Technical Note NCAR/TN-423+STR, NCAR, Boulder, Colorado

    Google Scholar 

  • Östlund HG, Craig H, Broecker WS, Spencer D (1987) GEOSECS Atlantic, Pacific, and Indian ocean expeditions. Shorebased data and graphics. GEOSECS Atlas Series, US Govt Printing Office, Washington DC, 7, pp 1–200

    Google Scholar 

  • Pacanowski RCE (1996) MOM 2. Documentation, User’ s Guide and Reference Manual. Technical Report 3.2, GFDL Ocean Group, GFDL, Princeton, New Jersey, pp 1–329

    Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Progr Oceanogr 26: 1–73

    Article  Google Scholar 

  • Roemmich D, Wunsch C (1985) Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res 32: 619–664

    Article  Google Scholar 

  • Rohling EJ, Bigg GR (1998) Paleosalinity and δ18O: A critical assessment. J Geophys Res 103:1307–1318

    Article  Google Scholar 

  • Schmidt GA (1998) Oxygen-18 variations in a global ocean model. Geophys Res Lett 25:1201–1204

    Article  Google Scholar 

  • Schotterer U, Oldfield F, Frölich K (1996) Globalnetwork for isotopes in precipitation. IAEA, Vienna, pp 1–48

    Google Scholar 

  • Semtner A (1986) Finite-difference formulation of a World Ocean model. In: O’Brien JJ (ed) Advanced Physical Oceanographic Modelling. NATO ASI Series C 186, Reidel, Dordrecht, pp 187–202

    Google Scholar 

  • Shackleton NJ (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial. Colloq Int Centr Nat Rech Sci 219:203–209

    Google Scholar 

  • Shea DJ, Trenberth KE, Reynolds RW (1990) A global monthly sea surface temperature climatology. NCAR Technical Note NCAR/TN-345, NCAR, Boulder, Colorado, pp 1–167

    Google Scholar 

  • Stössel A, Oberhuber JM, Maier-Reimer E (1996) On the representation of sea ice in global ocean general circulation models. J Geophys Res 101 (C8): 18, 193-18, 212

    Article  Google Scholar 

  • Stramma L, Lutjeharms JRE (1996) The flow field of the subtropical gyre of the South Indian Ocean. J Geophys Res 102: 5513

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995) Effect of sea ice on the salinity of antarctic bottom waters. J Phys Oceanogr 25:1980–1997

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Bryan K (1989). Simulations of radiocarbon in a coarse-resolution World Ocean model. 1. Steady state prebomb distributions. J Geophys Res 94:8217–8242

    Article  Google Scholar 

  • UNESCO (1981) Tenth report of the joint panel of oceanographic tables and standards. UNESCO Technical Papers in Marine Sciences 36, UNESCO, Paris

    Google Scholar 

  • Veronis G (1973) Large scale ocean circulation. Adv Appl Mechl3

    Google Scholar 

  • Veshteyn VY, Malyuk GA, Rusanov VP (1974) Oxygen-18 distribution in the Central Arctic Basin. Oceanol-ogy 14:514–519

    Google Scholar 

  • Wajsowicz RC (1993) A consistent formulation of the anisotropic stress tensor for use in models of the large scale ocean circulation. J Comp Phys 105: 333–338

    Article  Google Scholar 

  • Washington WM, CL Parkinson (1986) An Introduction to Three-Dimensional Climate Modeling. University Science Books, Mill Valley, California

    Google Scholar 

  • Weaver AJ, Hughes TMC (1996) On the incompatibility of ocean and atmosphere models and the need for flux adjustments. Clim Dyn 12:141–170

    Article  Google Scholar 

  • Weiss RF, Östlund HG, Craig H (1979) Geochemical studies of the Weddell Sea. Deep-Sea Res 26A: 1093–1120

    Article  Google Scholar 

  • Whitworth T III, Peterson RG (1985) Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J Phys Oceanogr 15: 810–816

    Article  Google Scholar 

  • Zahn R, Mix AC (1991) Benthicforaminiferal δ18Ointhe ocean’s temperature-salinity-density field: constraints on the ice age thermohaline circulation. Paleoceanography 6:1–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paul, A., Mulitza, S., Pätzold, J., Wolff, T. (1999). Simulation of Oxygen Isotopes in a Global Ocean Model. In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics