Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 15))

  • 268 Accesses

Abstract

Numerical simulations of lattice gauge theories with fermions rely heavily on the iterative solution of huge sparse linear systems of equations. Due to short recurrences, which mean small memory requirement, Lanczos-type methods (including suitable versions of the conjugate gradient method when applicable) are best suited for this type of problem. The Wilson formulation of the lattice Dirac operator leads to a matrix with special symmetry properties that makes the application of the classical biconjugate gradient (BICG) particularly attractive, but other methods, for example BICGSTAB and BICGSTAB2 have also been widely used. We discuss some of the pros and cons of these methods. In particular, we review the specific simplification of BICG, clarify some details, and discuss general results on the roundoff behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Boriçi. Krylov Subspace Methods in Lattice QCD. Diss. ETH, Swiss Federal Institute of Technology (ETH) Zurich, 1996.

    Google Scholar 

  2. A. Boriçi and P. de Forcrand. Fast Krylov space methods for calculation of quark propagators. IPS Research Report 94–03, ETH Zurich, 1994.

    Google Scholar 

  3. G. Cella, A. Hoferichter, V. K. Mitrjushkin, M. Müller-Preuss, and A. Vincere. Efficiency of different matrix inversion methods applied to Wilson fermions. Technical Report HU Berlin-EP-96/17, IFUP-TH 29/96, SWAT/96/108, 1996.

    Google Scholar 

  4. J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue Computations (2 Vols.). Birkhäuser, Boston-Basel-Stuttgart, 1985.

    Google Scholar 

  5. D. Day. An efficient implementation of the non-symmetric Lanczos algorithm. SIAM J. Matrix Anal. Appl., 18:566–589, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. M. Day III. Semi-duality in the two-sided Lanczos algorithm. PhD thesis, University of California at Berkeley, 1993.

    Google Scholar 

  7. P. Fiebach, R. W. Freund, and A. Frommer. Variants of the block-QMR method and applications in quantum chromodynamics In A. Sydow, editor, 15th IMACS World Congress on Scientific Computation,Modelling and Applied Mathematics, Vol. 3, Computational Physics, Chemistry and Biology, pages 491–496. Wissenschaft und Technik Verlag, 1997.

    Google Scholar 

  8. R. Fletcher. Conjugate gradient methods for indefinite systems. In G. A. Watson, editor, Numerical Analysis,Dundee, 1975, volume 506 of Lecture Notes in Mathematics, pages 73–89. Springer, Berlin, 1976.

    Google Scholar 

  9. R. W. Freund. Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Statist. Comput., 13:425–448, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. W. Freund. Lanczos-type algorithms for structured non-Hermitian eigen-value problems. In J. D. Brown, M. T. Chu, D. C. Ellison, and R. J. Plemmons, editors, Proceedings of the Cornelius Lanczos International Centenary Conference, pages 243–245. SIAM, Philadelphia, PA, 1994.

    Google Scholar 

  11. R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput., 14:137–158, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. W. Freund and N. M. Nachtigal. An implementation of the QMR method based on coupled two-term recurrences. SIAM J. Sci. Comput., 15:313–337, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. W. Freund and N. M. Nachtigal. Software for simplified Lanczos and QMR algorithms. Applied Numerical Mathematics, 19:319–341, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Frommer. Linear system solvers - recent developments and implications for lattice computations. Nuclear Physics B (Proc. Suppl.), 53:120–126, 1996.

    Article  Google Scholar 

  15. A. Frommer, V. Hannemann, B. Nöckel, T. Lippert, and K. Schilling. Accelerating Wilson fermion matrix inversions by means of the stabilized biconjugate gradient algorithm. Int. J. Modern Physics C, 5:1073–1088, 1994.

    Article  Google Scholar 

  16. A. Frommer and B. Medeke. Exploiting structure in Krylov subspace methods for the Wilson fermion matrix. In A. Sydow, editor, 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Vol. 3,Computational Physics, Chemistry and Biology, pages 485–490. Wissenschaft und Technik Verlag, 1997.

    Google Scholar 

  17. A. Frommer, B. Nöckel, S. Güsken, T. Lippert, and K. Schilling. Many masses on one stroke: economic computation of quark propagators. Int. J. Modern Physics C, 6:627–638, 1995.

    Article  Google Scholar 

  18. A. Greenbaum. Predicting the behavior of finite precision Lanczos and conjugate gradient computations. Linear Algebra Appl., 113:7–63, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Greenbaum. Accuracy of computed solutions from conjugate-gradient-like methods. In M. Natori and T. Nodera, editors, Advances in Numerical Methods for Large Sparse Sets of Linear Systems, number 10 in Parallel Processing for Scientific Computing, pages 126–138. Keio University, Yokahama, Japan, 1994.

    Google Scholar 

  20. A. Greenbaum. Estimating the attainable accuracy of recursively computed residual methods. SIAM J. Matrix Anal. Appl., 18(3):535–551, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Greenbaum and Z. Strakos. Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal. Appl., 13(1):121–137, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. H. Gutknecht. Solving Theodorsen’s integral equation for conformal maps with the fast fourier transform and various nonlinear iterative method. Numer. Math., 36:405–429, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. H. Gutknecht. The unsymmetric Lanczos algorithms and their relations to Padé approximation, continued fractions, and the qd algorithm. in Preliminary Proceedings of the Copper Mountain Conference on Iterative Methods, April 1990. http://www.sam.math.ethz.ch/-mhg/pub/CopperMtn90.ps. Z and CopperMtn90–7.ps.Z.

    Google Scholar 

  24. M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process and related algorithms, Part I. SIAM J. Matrix Anal. Appl., 13:594–639, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. H. Gutknecht. Variants of BiCGStab for matrices with complex spectrum. SIAM J. Sci. Comput., 14:1020–1033, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process and related algorithms, Part II. SIAM J. Matrix Anal. Appl., 15:15–58, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. H. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of equations. Acta Numerica, 6:271–397, 1997.

    Article  MathSciNet  Google Scholar 

  28. M. H. Gutknecht and K. J. Ressel. Look-ahead procedures for Lanczos-type product methods based on three-term recurrences. Tech. Report TR-96–19, Swiss Center for Scientific Computing, June 1996.

    Google Scholar 

  29. M. H. Gutknecht and Z. Strakos. Accuracy of two three-term and three two-term recurrences for Krylov space solvers. SIAM J. Matrix Anal. Appl. To appear.

    Google Scholar 

  30. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau Standards, 49:409–435, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Hochbruck. The Padé table and its relation to certain numerical algorithms. Habilitationsschrift, Universität Tübingen, Germany, 1996.

    Google Scholar 

  32. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1985.

    MATH  Google Scholar 

  33. C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bureau Standards, 49:33–53, 1952.

    Article  MathSciNet  Google Scholar 

  34. T. A. Manteuffel. The Tchebyshev iteration for nonsymmetric linear systems. Numer. Math., 28:307–327, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Neumaier. Iterative regularization for large-scale ill-conditioned linear systems. Talk at Oberwolfach, April 1994.

    Google Scholar 

  36. B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, N.J., 1980.

    MATH  Google Scholar 

  37. B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective reorthogonalization. Math. Comp., 33:217–238, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp., 44:105–124, 1985.

    MathSciNet  MATH  Google Scholar 

  39. H. Rutishauser. Beiträge zur Kenntnis des Biorthogonalisierungs-Algorithmus von Lanczos. Z. Angew. Math. Phys., 4:35–56, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal., 2:485–506, 1982.

    Article  MathSciNet  Google Scholar 

  41. G. L. G. Sleijpen and H. A. van der Vorst. Reliable updated residuals in hybrid Bi-CG methods. Computing, 56:141–163, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema. BiCGstab(l) and other hybrid Bi-CG methods. Numerical Algorithms, 7:75–109, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki. Effects of rounding errors in determining approximate solutions in Krylov solvers for symmetric linear systems. Preprint 1006, Department of Mathematics, Universiteit Utrecht, March 1997.

    Google Scholar 

  44. P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 10:36–52, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13:631–644, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  46. H. A. van der Vorst and Q. Ye. Residual replacement strategies for Krylov subspace iterative methods for the convergence of true residuals. Preprint, 1999.

    Google Scholar 

  47. R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962. Rev. 2nd ed., Springer-Verlag, 1999.

    Google Scholar 

  48. H. E. Wrigley. Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex. Comput. J., 6:169–176, 1963.

    MathSciNet  MATH  Google Scholar 

  49. S.-L. Zhang. GPBI-CG: generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM J. Sci. Comput., 18(2):537–551, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Zurmühl. Matrizen und ihre technischen Anwendungen, 4. Aufl. Springer-Verlag, Berlin, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutknecht, M.H. (2000). On Lanczos-Type Methods for Wilson Fermions. In: Frommer, A., Lippert, T., Medeke, B., Schilling, K. (eds) Numerical Challenges in Lattice Quantum Chromodynamics. Lecture Notes in Computational Science and Engineering, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58333-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58333-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67732-1

  • Online ISBN: 978-3-642-58333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics