Skip to main content

Globaler Klimawandel und natürliche Klimavariabilität — Welche Ursachen haben sie?

  • Chapter
Energie und Umwelt

Zusammenfassung

Viele Hinweise aus der Vergangenheit unseres Planeten zeigen, dass das Klima im Laufe der Zeit starken Veränderungen unterworfen war. Einige dieser Änderungen verliefen recht langsam, bemerkbar nur über Zeiträume von vielen tausend Jahren, andere hingegen abrupt und dramatisch, wie sich aus kürzlich durchgeführten Messungen an Eiskernen schließen lässt. Das Thema dieser Arbeit wird die Frage sein, ob die globale Klimaerwärmung, wie sie im 20. Jahrhundert beobachtet wurde, auf natürliche Klimavariationen oder auf anthropogene Einflüsse zurückzuführen ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 48.27
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Alley, R.B., D.A. Meese, C.A. Shuman, A.J. Gow, K.C. Taylor, P.M. Grootes, J.W.C. White und M. Ram, 1993: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529.

    Article  Google Scholar 

  • Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. 41, 237–276.

    Article  Google Scholar 

  • Bengtsson, L., 1997: A Numerical Simulation of Anthropogenic Climate Change. Ambio 26 No. 1, 58–65.

    Google Scholar 

  • Bengtsson, L., E. Roeckner und M. Stendel, 1999: Why is the global warming proceeding much slower than expected? J. Geophys. Res. 104, 3865–3876.

    Article  CAS  Google Scholar 

  • Berger, A., 1988: Milankovitch Theory and Climate. Review of Geophysics 26, 4, 624–657.

    Article  Google Scholar 

  • Bluth, G.J.S., S.D. Doiron, C.C. Schnetzler, A.J. Krueger und L.S. Walter, 1992: Global tracking of the SO2 clouds from the June 1991 Mounth Pinatubo eruptions. Geophys. Res. Lett. 19, 151–154.

    Article  CAS  Google Scholar 

  • Bryan, F., 1986: High latitude salinity effects and interhemispheric thermohaline circulations. Nature 305, 301–304.

    Article  Google Scholar 

  • Brovkin, V., M. Claussen, V. Petoukhov und A. Ganopolski, 1998: On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. J. Geophys. Res. 103, D24, 31,613–31,624.

    Google Scholar 

  • Claussen, M., 1998: On multiple solutions of the atmosphere-vegetation system in present-day climate. Global Change Biol. 4, 549–559.

    Article  Google Scholar 

  • Cubasch, U., R. Voss, G.C. Hegerl, J. Waszkewitz und T.J. Crowley, 1997: Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Climate Dyn. 13, 757–767.

    Article  Google Scholar 

  • Dutton, E.G. und J.R. Christy, 1992: Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichónn and Pinatubo. Geophys. Res. Lett. 19, 2313–2316.

    Article  Google Scholar 

  • Eddy, J.A., 1976: The Maunder minimum. Science 192, 1189–1202.

    Article  CAS  Google Scholar 

  • Flohn, H. und A. Kapala, 1989: Changes in tropical sea-air interaction processes over a 30-year period. Nature 338, 244–245.

    Article  Google Scholar 

  • Gaffen, D.J., T.P. Barnett und W.P. Elliott, 1991: Spaces and timescales of global tropospheric moisture. J. Climate 4, 989–1008.

    Article  Google Scholar 

  • Gleick, J., 1988: Chaos — Making a new science. Willam Heinemann Ltd., ISBN: 0434 29554x, 353 p.

    Google Scholar 

  • Hansen, J., I. Fung, R. Ruedy und M. Sato, 1992: Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett. 19, 215–218.

    Article  Google Scholar 

  • Hasselmann, K., 1976: Stochastic climate models I, Theory. Tellus 28, 473–485.

    Article  Google Scholar 

  • Hense, A., P. Krahe und H. Flohn, 1988: Recent fluctuations of tropospheric temperature and water vapor content in the Tropics. Meteor. Atmos. Phys. 38, 215–227.

    Article  Google Scholar 

  • Hoyt, D.V. und K.H. Schatten, 1993: A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. 98, 18 895–18 906.

    Google Scholar 

  • Hurrell, J., 1995: Decadal trends in the north atlantic os illation. Regional temperatures and precipitations. Science 269, 676–679.

    Article  CAS  Google Scholar 

  • Inamdar, A.K. und V. Ramanathan, 1998: Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperature. J. Geophys. Res. 103, D24, 32,177–32,194.

    Google Scholar 

  • IPCC, 1990: Climate Change, The IPCC Scientific Assessments. Eds. J. Houghton, G.J. Jenkins und J.J. Ephraums, Cambridge University Press.

    Google Scholar 

  • IPCC, 1994: Climate Change. Eds. J. Houghton, L.K. Meira Filho, J. Bruce, H. Lee, B.A. Callender, E. Haites, N. Harris und K. Maskell, Cambridge University Press.

    Google Scholar 

  • Krueger, A.J., S.L. Walter, P.K. Bhartia, C.C. Schnetzler, N.A. Krotkov, I. Sprod und G.J.S. Bluth, 1995: Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments. J. Geophys. Res. 100, 14,057–14, 076.

    Google Scholar 

  • Lean, J., J. Beer und R. Bradley, 1995: Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198.

    Article  Google Scholar 

  • Legrand, M., 1955: Atmospheric chemistry changes versus post climate inferred from polar ice cores. In: Aerosol Forcing of Climate. Eds. R.J. Charlson und J. Heintzenberg. John Wiley & Sons, Chichester, 123–151.

    Google Scholar 

  • LeTreut, H. und B.J. McAvaney, 1999: Model intercomparison: Slab Ocean 2 × CO2 Equilibrium Experiments. Submitted.

    Google Scholar 

  • Lindzen, R.S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc. 71, 288–299.

    Article  Google Scholar 

  • Lindzen, R.S., 1994: On the scientific basis for global warming scenarios. Environ. Pollut. 83, 125–134.

    Article  CAS  Google Scholar 

  • Lindzen, R.S. und C. Giannitsis, 1998: On the climatic implications of volcanic cooling. J. Geophys. Res. 103, 5929–5941.

    Article  Google Scholar 

  • Lorenz, N., 1968: Climate determinism. Meteor. Monogr. 8, 30, 1–3.

    Google Scholar 

  • Maier-Reimer, E. und U. Mikolajevicz, 1989: Experiments with an OGCM on the cause of the Younger Dryas. In: Oceanography 1988, Eds. A Ayala-Castañares, W. Wooester, A. Yane-Arancibia, UN AM Press. Mexico 87–100.

    Google Scholar 

  • Manabe, S. und R.T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259.

    Article  CAS  Google Scholar 

  • Mann, M., R. Bradley und M. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787.

    Article  CAS  Google Scholar 

  • Mann, M., R. Bradley und M. Hughes, 1999: Northern hemisphere temperatures during the post millenium: Inferences, Uncertainties, and Limitations. Geophys. Res. Lett. 26, 759–762.

    Article  Google Scholar 

  • Milankovitch, M., 1920: Theorie mathématique des phénomènes thermiques produits par la radiation solaire, Académie Yugoslave des Sciences et des Art de Zagreb, Gauthier-Villars.

    Google Scholar 

  • Milankovitch, M., 1941: Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Sciences, Spec. pub. 132, Section of Mathematical and Natural Sciences, vol. 33, Belgrade, 633 pp. („Canon of Insolation and the Ice Age Problem“, English Translation by Israel Program for Scientific Translation and published for the U.S. Department of Commerce and National Science Foundation, Washington D.C., 1969).

    Google Scholar 

  • Mitchell, J.F.B., 1989: The „greenhouse effect“and climate change. Rev. Geophys. 27, 115–139.

    Article  Google Scholar 

  • Oberhuber, J.M., E. Roeckner, M. Christoph, M. Esch und M. Latif, 1998: Predicting the ‘97 El Niño event with a global climate model. Max-Planck-Institut für Meteorologie Report No. 254, Hamburg. Shortened version in Geophys. Res. Lett. 25, 13, 2273–2276.

    Article  Google Scholar 

  • Räisänen, J., 1998: CMIP2 Subproject Climate Change in Northern Europe: plans and first results. Proceedings, Coupled Model Intercomparison Project Workshop, Melbourne, Australia, 14–15 October 1998.

    Google Scholar 

  • Rahmstorf, S., 1997: Risk of sea-change in the Atlantic. Nature, 388, 825–826.

    Article  CAS  Google Scholar 

  • Ramanathan, V., 1981: The role of ocean-atmosphere interactions in the CO2 climate problem. J. Atmos. Sci. 38,918–930.

    Article  CAS  Google Scholar 

  • Ramanathan, V. und W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 EL Niño. Nature 351, 27–32.

    Article  Google Scholar 

  • Raval, A. und V. Ramanathan, 1989: Observational determination of the greenhouse effect. Nature 342, 758–761.

    Article  Google Scholar 

  • Reichert, B.K., L. Bengtsson und O. Åkesson, 1999: A statistical modeling approach for the simulation of local paleoclimatic proxy records using general circulation model output. J. Geophys. Res. 104, 19071–19083.

    Article  Google Scholar 

  • Reichert, B.K., 2000: Natural climate variability as indicated by glaciers and implications for climate change. In Quantification of natural climate variability in Paleoclimatic Proxy Data using General Circulation Models: Application to glacier systems, Dissertation, Max-Planck-Institut für Meteorologie, Examensarbeit Nr. 72, Hamburg, 95–113.

    Google Scholar 

  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld und H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J. Climate, 12, 3004–3032.

    Article  Google Scholar 

  • Sarachik, E.S., M. Winton und F.L. Yin, 1996: Mechanisms for decadal-to-centennial climate variability. In Decadal Climate Variability — Dynamics and Predictabilities, Eds. D. Anderson und J. Willebrand, NATO ASI Series I: Global Environmental Change, Vol. 44, 157–210.

    Google Scholar 

  • Sausen, R., R.K. Bartheis und K. Hasselmann, 1988: Coupled ocean and atmospheric models with flux corrections. Climate Dynamics 2, 154–163.

    Article  Google Scholar 

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus 13, 2, 224–230.

    Article  Google Scholar 

  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif und E. Roeckner, 1998: ENSO response to greenhouse warming. Max-Planck-Institut für Meteorologie Report 251, Hamburg.

    Google Scholar 

  • Wallace, J.M., Y. Zhang und J.A. Renwick, 1995: Dynamical contribution to hemispheric mean temperature trends. Science 270, 780–783.

    Article  CAS  Google Scholar 

  • Wunsch, C. 1992: Decade-to-century changes in the ocean circulation. Oceanography 5, 99–106.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bengtsson, L., Reichert, B.K. (2000). Globaler Klimawandel und natürliche Klimavariabilität — Welche Ursachen haben sie?. In: Wolfrum, J., Wittig, S., Freerk, M. (eds) Energie und Umwelt. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57272-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57272-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67575-4

  • Online ISBN: 978-3-642-57272-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics