Skip to main content

Factors Influencing Nitrogen Fixation and Nitrogen Release in Biological Soil Crusts

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 150))

Abstract

Nitrogen (N) occurs in the atmosphere as N2, a form that is not useable by vascular plants. N2 must first be “fixed”, or reduced, to ammonia (NH4 +) by prokaryotic organisms such as eubacteria and cyanobacteria. Thus, an important feature of the cyanobacteria and cyanolichens in soil crusts is their ability to fix atmospheric N. As this fixation is an anaerobic process, most cyanobacterial fixation takes place in heterocysts, which are specialized, thick-walled cells with enhanced respiration and no oxygen-producing photosystem II (Paerl 1990). Heterocystic genera commonly occurring in soil crusts include Anabaena, Calothrix, Cylindrospermum, Dicothrix, Hapalosiphon, Nodularia, Nostoc, Plectonema, Schizothrix, and Scytonema (Harper and Marble 1988). Nitrogen fixation has also been demonstrated in non- heterocystous soil genera such as Lyngbya, Microcoleus, Oscillatoria, Phormidium, and Tolypothrix (Rogers and Gallon 1988; Belnap 1996), although this may be a result of associated bacteria (Steppe et al. 1996). Nonheterocystic species can exclude oxygen in several ways: (1) behaviorally by clumping; (2) spatially or chemically within a cell; (3) temporally, by fixing at night when no oxygen is being evolved by photosynthesis; or (4) through a combination of these (Paerl 1978; Rogers and Gallon 1988; Paerl 1990). Bacteria associated with cyanobacteria may also contribute to N inputs by scavenging oxygen (thus creating anaerobic microzones for the cyanobacteria) or by fixing N themselves. This has been demonstrated for Microcoleus vaginatus isolated from soil crusts (Steppe et al. 1996). Soil lichens with cyanobacterial photobionts also fix N. Common N-fixing soil lichens include Nostoc-containing Collema spp. and Peltigera spp. and Scytonema-containing Heppia spp. Cyanobacteria also live as epiphytes on soil mosses and phycolichens; thus, this consortium of organisms can show fixation activity (Peters et al. 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander V, Kallio S (1976) Nitrogenase activity in Peltigera aphthosa and Stereocaulon paschale in early spring. Rep Kevo Subarct Res Stn 13:12–15

    Google Scholar 

  • Alexander V, Billington M, Schell DM (1978) Nitrogen fixation in arctic and alpine tundra. In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan arctic tundra. Springer, Berlin Heidelberg New York, pp 539–558

    Chapter  Google Scholar 

  • Ali S, Sandhu GR (1972) Blue-green algae of the saline soils of the Punjab. Oikos 23:268–272

    Article  Google Scholar 

  • Anderson DC, Harper KT, Holmgren RC (1982) Factors influencing development of cryptogamic soil crusts in Utah deserts. J Range Manage 35:180–185

    Article  Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57

    Article  CAS  Google Scholar 

  • Belnap J (1996) Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol Fertil Soils 23:362–367

    Article  CAS  Google Scholar 

  • Belnap J, Ojima D, Phillips S, Barger N (1999) Biological soil crusts of inner and outer Mongolia: impacts of grazing and precipitation on nitrogen cycles. In: Eldridge DJ, Tongway D, King G (eds) Proc 6th Int Rangeland Congress, Townsville, Australia

    Google Scholar 

  • Bergmann B, Johansson C, Söderbäck E (1992) The Nostoc-Gunnera symbiosis. New Phytol 122:379–400

    Article  Google Scholar 

  • Brock TD (1973) Lower pH limits for existence of blue-green algae: evolutionary and ecological implications. Science 179:480–483

    Article  PubMed  CAS  Google Scholar 

  • Coxson DS, Kershaw KA (1983a) The pattern of in situ summer nitrogenase activity in terrestrial Nostoc commune from Stipa-Bouteloua grassland, southern Alberta. Can J Bot 61:2686–2693

    Article  CAS  Google Scholar 

  • Coxson DS, Kershaw KA (1983b) Rehydration response of nitrogenase activity and carbon fixation in terrestrial Nostoc commune from Stipa-Bouteloua grassland. Can J Bot 61:2658–2668

    Article  CAS  Google Scholar 

  • Coxson DS, Kershaw KA (1983 c) Nitrogenase activity during chinook snow-melt sequences by Nostoc commune in Stipa-Bouteloua grassland. Can J Bot 29:938–944

    CAS  Google Scholar 

  • Coxson DS, McIntyre DD, Vogel HJ (1992) Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica 24:121–133

    Article  Google Scholar 

  • Crittenden PD, Kershaw KA (1979) Studies on lichen-dominated systems. XXII. The environmental control of nitrogenase activity in Stereocaulon paschale in sprucelichen woodland. Can J Bot 57:236–254

    Article  CAS  Google Scholar 

  • Davey A, Marchant HJ (1983) Seasonal variation in nitrogen fixation by Nostoc commune Vaucher at the Vestfold Hills, Antarctica. Phycologia 22:377–385

    Article  Google Scholar 

  • David KAV, Fay P (1977) Effects of long-term treatment with acetylene on nitrogen-fixing microorganisms. Appl Environ Microbiol 34:640–646

    PubMed  CAS  Google Scholar 

  • Delwiche CC, Wijler J (1956) Non-symbiotic nitrogen fixation in soil. Plant Soil 7:113–129

    Article  CAS  Google Scholar 

  • Dodds WK (1989) Microscale vertical profiles of N2 fixation, photosynthesis, O2, chlorophyll a and light in a cyanobacterial assemblage. Appl Environ Microbiol 55:882–886

    PubMed  CAS  Google Scholar 

  • Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of Nostoc. J Phycol 31:2–18

    Article  CAS  Google Scholar 

  • DuBois JD, Kapustka LA (1983) Biological nitrogen influx in an Ohio relict prairie. Am J Bot 70:8–16

    Article  CAS  Google Scholar 

  • Englund B (1978) Effects of environmental factors on acetylene reduction by intact thallus and excised cephalodia of Peltigera aphthosa Willd. Ecol Bull 26:234–246

    Google Scholar 

  • Englund B, Meyerson H (1974) In situ measurements of nitrogen fixation at low temperatures. Oikos 25:283

    Google Scholar 

  • Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, New York, pp 385–406

    Google Scholar 

  • Fernandes VE, Leganes F (1990) Regulatory effects of pH and incident irradiance on the level of nitrogenase activity in the cyanobacterium Nostoc. J Plant Physiol 135:623–627

    Article  Google Scholar 

  • Fritz-Sheridan RP (1987) Nitrogen fixation on a tropical volcano, La Soufriere. I. Nitrogen fixation by Scytonema sp. and Stereocaulon virgatum Ach. during colonization of phreatic material. Biotropica 19:297–300

    Article  Google Scholar 

  • Fritz-Sheridan RP (1988) Physiological ecology of nitrogen fixing blue-green algal crusts in the upper-subalpine life zone. J Phycol 24:302–309

    Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Granhall O (1970) Acetylene reduction by blue-green algae isolated from Swedish soils. Oikos 21:330–334

    Article  CAS  Google Scholar 

  • Granhall U (1981) Biological nitrogen fixation in relation to environmental factors and functioning of natural ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecol Bull 33, Swedish Nat Res Council, Stockholm, pp 131–144

    Google Scholar 

  • Griffiths MSH, Gallon JR (1987) The diurnal pattern of dinitrogen fixation by cyanobacteria in situ. New Phytol 107:649–657

    Article  Google Scholar 

  • Guilbault M R, Matthias A D (1998) Emissions of N2O from Sonoran desert and effluent-irrigated grass ecosystems. J Arid Environ 38:87–98

    Article  Google Scholar 

  • Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangelands. In: Tueller PT (ed) Vegetation science applications for range-land analysis and management. Kluwer Academic Publishers, Dordrecht, pp 135–169

    Chapter  Google Scholar 

  • Henriksson E (1957) Studies in the physiology of the lichen Collema. I. The production of extracellular nitrogenous substances by the algal partner under various conditions. Physiol Plant 10:943–948

    Article  CAS  Google Scholar 

  • Henriksson E, DaSilva EJ (1978) Effects of some inorganic elements on nitrogen fixation in blue-green algae and some ecological aspects of pollution. Z Allg Mikrobiol 18: 487–494

    Article  PubMed  CAS  Google Scholar 

  • Horne AJ (1972) The ecology of nitrogen fixation on Signy Island, South Orkney Islands. Bull Br Antarct Surv 27:1–18

    Google Scholar 

  • Huss-Danell K (1977) Nitrogen fixation by Stereocaulon paschale under field conditions. Can J Bot 55:585–592

    Article  CAS  Google Scholar 

  • Huss-Danell K (1978) Seasonal variation in the capacity for nitrogenase activity in the lichen Stereocaulon paschale. New Phytol 81:89–98

    Article  CAS  Google Scholar 

  • Isichei AO (1980) Nitrogen fixation by blue-green algae soil crusts in Nigerian savanna. In: Rosswall T (ed) Nitrogen cycling in West African ecosystems. NFR, Stockholm, pp 191–199

    Google Scholar 

  • Jeanfils J, Tack JP (1992) Identification and study of growth and nitrogenase activity of nitrogen-fixing cyanobacteria from tropical soil. Vegetatio 103:59–66

    Google Scholar 

  • Jeffries DL, Klopatek JM, Link SO, Bolton H Jr (1992) Acetylene reduction by cryp-togamic crusts from a blackbrush community as related to resaturation and dehydration. Soil Biol Biochem 24:1101–1105

    Article  CAS  Google Scholar 

  • Johansen JR, Rushforth SR (1985) Cryptogamic soil crusts: seasonal variation in algal populations in the Tintic Mountains, Juab County, Utah, USA. Great Basin Nat 45:14–21

    Google Scholar 

  • Johansen JR, Ashley J, Rayburn WR (1993) Effects of rangefire on soil algal crusts in semiarid shrub-steppe of the lower Columbia Basin and their subsequent recovery. Great Basin Nat 53:73–88

    Google Scholar 

  • Johnson GV (1982) Nitrogen fixation by soil crusts in a Chihuahuan desert ecosystem. N M J Sci 22:23

    Google Scholar 

  • Jones K (1977a) Acetylene reduction by blue-green algae in sub-tropical grassland. New Phytol 78:421–426

    Article  CAS  Google Scholar 

  • Jones K (1977b) Acetylene reduction in the dark by mats of blue-green algae in subtropical grassland. Ann Bot 41:807–812

    CAS  Google Scholar 

  • Jones K (1977 c) The effects of light intensity on acetylene reduction by blue-green algal mats in sub-tropical grassland. New Phytol 78:427–431

    Article  CAS  Google Scholar 

  • Jones K (1977d) The effects of moisture on acetylene reduction by mats of blue-green algae in sub-tropical grassland. Ann Bot 41:801–806

    CAS  Google Scholar 

  • Jones K (1981) Diurnal acetylene reduction by mats of blue-green algae in sub-tropical grassland: use of short-term and long-term in situ assays. New Phytol 88:73–78

    Article  CAS  Google Scholar 

  • Jones K (1989) Interactions between desiccation and dark nitrogen fixation in tropical Nostoc commune. New Phytol 113:1–5

    Article  CAS  Google Scholar 

  • Jones K, Stewart WDP (1969a) Nitrogen turnover in marine and brackish habitats. III. Production of extracellular N by Calothrix. J Mar Biol Assoc UK 49:475–488

    Article  CAS  Google Scholar 

  • Jones K, Stewart WDP (1969b) Nitrogen turnover in marine and brackish habitats. IV. Uptake of the extracellular products of the nitrogen fixing algae Calothrix. J Mar Biol Assoc UK 49:701–716

    Article  CAS  Google Scholar 

  • Kapustka LA, Rice EL (1978) Symbiotic and asymbiotic N2-fixation in a tall grass prairie. Soil Biol Biochem 10:553–554

    Article  CAS  Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, London

    Google Scholar 

  • Klubek B, Skujins J (1980) Heterotrophic nitrogen fixation in arid soil crusts. Soil Biol Biochem 12:229–236

    Article  CAS  Google Scholar 

  • Klubek B, Eberhardt PJ, Skujins J (1978) Ammonia volatilization from Great Basin Desert soils. In: West NE, Skujins JJ (eds) Nitrogen in desert ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, pp 107–129

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lennihan R, Chapin DM, Dickson LG (1994) Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commune. Can J Bot 72:940–945

    Article  Google Scholar 

  • Liengen L (1999) Conversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitats. Can J Microbiol 45:223–229

    Article  CAS  Google Scholar 

  • Loftis SG, Kurtz EB (1980) Field studies of inorganic nitrogen added to semiarid soils by rainfall and blue-green algae. Soil Sci 129:150–155

    Article  CAS  Google Scholar 

  • Lynn RI, Cameron RE (1972) The role of algae in crust formation and nitrogen cycling in desert soils. Research Memorandum RM 73-40, vol 3, International Biome Programme, Utah State University 2.3.4.6:1–10, Logan, UT

    Google Scholar 

  • MacFarlane JD, Kershaw KA (1980) Physiological-environmental interactions in lichens. IX. Thermal stress and lichen ecology. New Phytol 84:669–685

    Article  CAS  Google Scholar 

  • McCree KJ (1981) Photosynthetically active radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I: responses to the physical environment. Springer, Berlin Heidelberg New York, pp 41–55

    Chapter  Google Scholar 

  • Meeks JC, Enderlin CS, Joseph CM, Chapman JS, Lollar MWL (1985) Fixation of [15N]N2 and transfer of fixed nitrogen in the Anthoceros-Nostoc symbiotic association. Planta 164:406–414

    Article  CAS  Google Scholar 

  • Metting FB (1981) The systematics and ecology of soil algae. Bot Rev 47:195–312

    Article  CAS  Google Scholar 

  • Millbank JW (1978) The contribution of nitrogen fixing lichens to the nitrogen status of their environment. Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria. Ecol Bull 26, Swedish Nat Res Council, Stockholm, pp 260–265

    Google Scholar 

  • Millbank JW (1982) The assessment of nitrogen fixation and throughput by lichens. III. Losses of nitrogenous compounds by Peltigera membranacea, P. polydactyla and Lobaria pulmonaria in simulated rainfall episodes}. New Phytol 97:229–234

    Article  Google Scholar 

  • Mummey DL, Smith JL, Bolton H (1994) Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation. Soil Biol Biochem 26:279–286

    Article  CAS  Google Scholar 

  • Nakatsubo T, Ino Y (1987) Nitrogen cycling in an Antarctic ecosystem. 2. Estimation of the amount of nitrogen fixation in a moss community on East Ongul Island. Ecol Res 2:31–40

    Article  Google Scholar 

  • Nash TH III (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Ohki K, Fujita Y (1988) Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium grown under artificial conditions. Mar Biol 98:111–114

    Article  CAS  Google Scholar 

  • Paerl HW (1978) Light-mediated recovery of N2-fixation in the blue-green algae Anabaena spp. in O2-supersaturated waters. Oecologia 32:135–139

    Article  Google Scholar 

  • Paerl HW (1982) Interactions with bacteria. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California Press, Berkeley, pp 441–461

    Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. Adv Microb Ecol 11:305–343

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  • Peterjohn WT, Schlesinger WH (1991) Factors controlling denitrification in a Chihuahuan desert ecosystem. Soil Soc Am J 55:1694–1701

    Article  Google Scholar 

  • Peters GA, Toia RE Jr, Calvert HE, Marsh BH (1986) Lichens to Gunnera — with emphasis on Azolla. Plant Soil 90:17–34

    Article  Google Scholar 

  • Potts M (1980) Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula: distribution, zonation, stratification and taxonomic diversity. Phycologia 19:60–73

    Article  Google Scholar 

  • Potts M (1984) Nitrogen fixation in mangrove forests. In: Dov Por F, Dor I (eds) Hydrobiology of the Mangal: the ecosystems of the mangrove forests. Dr W Junk, The Hague, pp 155–162

    Google Scholar 

  • Potts M, Olie JJ, Nickels JS, Parsons J, White DC (1987) Variation in phospholipid ester-linked fatty acids and carotenoids of desiccated Nostoc commune (cyanobacteria) from different geographic locations. Appl Environ Microbiol 53:4–9

    PubMed  CAS  Google Scholar 

  • Rai AN, Rowell P, Stewart WDP (1981) Nitrogenase activity and dark CO2 fixation in the lichen Peltigera aphthosa Willd. Planta 151:256–264

    Article  CAS  Google Scholar 

  • Reddy GB, Giddens J (1975) Nitrogen fixation by algae in fescuegrass soil crusts. Soil Sci Soc Am Proc 39:654–656

    Article  CAS  Google Scholar 

  • Rogers L, Gallon J (1988) Biochemistry of the algae and cyanobacteria. Clarendon Press, Oxford

    Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Rychert RC, Skujins J (1974) Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin desert. Soil Sci Soc Am Proc 38:768–771

    Article  CAS  Google Scholar 

  • Rychert RC, Skujins J, Sorensen D, Porcella D (1978) Nitrogen fixation by lichens and free-living microorganisms in deserts. In: West NW, Skujins J (eds) Nitrogen in desert ecosystems. Dowden, Hutchinson, Ross, Stroudsburg, PA, pp 20–30

    Google Scholar 

  • Scherer S, Ernst A, Chen TW, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62:418–423

    Article  Google Scholar 

  • Scherer S, Chen TW, Böger P (1986) Recovery of adenine-nucleotide pools in terrestrial blue-green algae after prolonged drought periods. Oecologia 68:585–588

    Article  Google Scholar 

  • Shapiro J (1973) Blue-green algae: why they become dominant. Science 179:382–384

    Article  PubMed  CAS  Google Scholar 

  • Silvester W, Parsons R, Watt P (1996) Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol 132:617–625

    Article  CAS  Google Scholar 

  • Skujins J, Klubek B (1978) Nitrogen fixation and cycling by blue-green algae-lichen-crusts in arid rangeland soils. In: Granhall U (ed) Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria. Ecol Bull 26, Swedish Nat Res Council, Stockholm, pp 164–171

    Google Scholar 

  • Smith VR (1984) Effects of abiotic factors on acetylene reduction by cyanobacteria epiphytic on moss. Appl Environm Microbiol 48:594–600

    CAS  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J (1996) Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 21:149–156

    Article  CAS  Google Scholar 

  • Stewart WDP (1967) Transfer of biologically fixed nitrogen in a sand dune slack region. Nature 214:603–604

    Article  Google Scholar 

  • Stewart WDP (1970) Algal fixation of atmospheric nitrogen. Plant Soil 32:555–588

    Article  CAS  Google Scholar 

  • Stewart WDP, Rogers GA (1977) The cyanophyte-hepatic symbiosis. II. Nitrogen fixation and the interchange of nitrogen and carbon. New Phytol 78:459–471

    Article  CAS  Google Scholar 

  • Stewart WDP, Sampaio MJ, Isichei AO, Sylvester-Bradley R (1977) Nitrogen fixation by soil algae of temperate and tropical soils. In: Döbereiner J, Burris RH, Hollaender A, Franco AA, Neyra CA, Scott DB (eds) Limitations and potentials for biological nitrogen fixation in the tropics. Plenum Press, New York, pp 41–63

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belnap, J. (2001). Factors Influencing Nitrogen Fixation and Nitrogen Release in Biological Soil Crusts. In: Belnap, J., Lange, O.L. (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56475-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56475-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43757-4

  • Online ISBN: 978-3-642-56475-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics