Skip to main content

Mechanisms Responsible for Intestinal Barrier Dysfunction in Critical Illness

  • Chapter
  • 103 Accesses

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

Abstract

The intestine, apart from serving as a portal of entry for nutrients and water into the body, also acts as a barrier limiting the systemic absorption of intraluminal microbes and microbial products. Results from laboratory and clinical studies suggest that numerous conditions, including sepsis, pancreatitis, and trauma can lead to derangements in the barrier function of the gut. It has been hypothesized that leakage of gut-derived pathogens and/or pro-inflammatory products into the lamina propria, mesenteric lymph, or blood stream can initiate or promote systemic inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Waaij D, Berghuis-deVries JM, Lekkerkerk-van der Wees JEC (1971) Colonization resistance of the digestive tract in conventional and antibiotic treated mice. J Hygiene 69:405–411

    Article  Google Scholar 

  2. Marshall JC, Christou NV, Horn R, Meakins JL (1988) The microbiology of multiple organ failure: the proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg 123:309–315

    Article  PubMed  CAS  Google Scholar 

  3. Marshall JC, Christou NV, Meakins JL (1993) The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg 218:111–119

    Article  PubMed  CAS  Google Scholar 

  4. Spitz J, Hecht G, Taveras M, Aoys E, Alverdy J (1994) The effect of dexamethasone administration on rat intestinal permeability: the role of bacterial adherence. Gastroenterology 106:35–41

    PubMed  CAS  Google Scholar 

  5. Alverdy J, Holbrook C, Rocha F, et al (2000) Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg 232:480–489

    Article  PubMed  CAS  Google Scholar 

  6. Laughlin RS, Musch MW, Hollbrook CJ, Rocha FM, Chang EB, Alverdy JC (2000) The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg 232:133–142.

    Article  PubMed  CAS  Google Scholar 

  7. Hecht G (1999) Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol 277.-C351–C358

    PubMed  CAS  Google Scholar 

  8. Matthews JB, Smith JA, Tally KJ, Menconi MJ, Nguyen H, Fink MP (1994) Chemical hypoxia increases functional permeability and activates electrogenic ion transport in human intestinal epithelial monolayers. Surgery 116:150–158

    PubMed  CAS  Google Scholar 

  9. Matthews JB, Tally KJ, Smith JA, Zeind AJ, Hrnjez BJ (1995) Activation of Cl secretion during chemical hypoxia by endogenous release of adenosine in intestinal epithelial monolayers. J Clin Invest 96:117–125

    Article  PubMed  CAS  Google Scholar 

  10. James SP (1993) The gastrointestinal mucosal immune system. Dig Dis 11:146–156

    Article  PubMed  CAS  Google Scholar 

  11. Yoshikai Y (1999) The interaction of intestinal epithelial cells and intraepithelial lymphocytes in host defense. Immunol Res 20:219–235

    Article  PubMed  CAS  Google Scholar 

  12. Sansonetti PJ, Phalipon A (1999) M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin Immunol 11:193–203

    Article  PubMed  CAS  Google Scholar 

  13. Moody FG, Haley-Russell D, Muncy DM (2000) Intestinal transit and bacterial translocation in obstructive pancreatitis. Dig Dis Sci 40:1798–1804

    Article  Google Scholar 

  14. Kueppers PM, Miller TA, Chen C-YK, Smith GS, Rodriguez LF, Moody FG (1993) Effect of total parenteral nutrition plus morphine on bacterial translocation in rats. Ann Surg 217:286–292

    Article  PubMed  CAS  Google Scholar 

  15. Madara JL (1989) Loosening tight junctions: lessons from the intestine. J Clin Invest 83:1089–1094

    Article  PubMed  CAS  Google Scholar 

  16. Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 269:G467–G475

    PubMed  CAS  Google Scholar 

  17. Madara JL, Moore R, Carlson S (1987) Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol 253:C854–C861

    PubMed  CAS  Google Scholar 

  18. Pantzar N, Lundin S, Westrom BR (1994) Bidirectional small-intestinal permeability in the rat to some common marker molecules in vitro. Scand J Gastroenterology 29:703–709

    Article  CAS  Google Scholar 

  19. Tomita M, Menconi MJ, Delude RL, Fink MP (2000) Polarized transport of hydrophilic compounds across rat colonic mucosa from serosa to mucosa is temperature dependent. Gastroenterology 118:535–543

    Article  PubMed  CAS  Google Scholar 

  20. O’Dwyer ST, Michie HR, Ziegler TR, Revhaug A, Smith RJ, Wilmore DW (1988) A single dose of endotoxin increases intestinal permeability in healthy humans. Arch Surg 123:1459–1464

    Article  PubMed  Google Scholar 

  21. Langkamp-Henken B, Donovan TB, Pate LM, Maull CD, Kudsk KA (1995) Increased intestinal permeability following blunt and penetrating trauma. Crit Care Med 23:660–664

    Article  PubMed  CAS  Google Scholar 

  22. Deitch EA (1990) Intestinal permeability is increased in burn patients shortly after injury. Surgery 107:411–416

    PubMed  CAS  Google Scholar 

  23. Ammori BJ, Leeder PC, King RFGJ, et al (1999) Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J Gastrointest Surg 3:252–262

    Article  PubMed  CAS  Google Scholar 

  24. Oudemans-van Straaten HM, Jansen PG, Hoek FJ, et al (1996) Intestinal permeability, circulating endotoxin, and postoperative systemic responses in cardiac surgery patients. J Cardiovasc Vasc Anesth 10:187–194

    Article  CAS  Google Scholar 

  25. Roumen RMH, Hendriks T, Wevers RA, Goris JA (1993) Intestinal permeability after severe trauma and hemorrhagic shock is increased without relation to septic complications. Arch Surg 128:453–457

    Article  PubMed  CAS  Google Scholar 

  26. Pape H-C, Dwenger A, Regel G, et al (1994) Increased gut permeability after multiple trauma. Br J Surg 81:850–852

    Article  PubMed  CAS  Google Scholar 

  27. Faries PL, Simon RJ, Martella AT, Lee MJ, Machiedo GW (1998) Intestinal permeability correlates with severity of injury in trauma patients. J Trauma 44:1031–1036

    Article  PubMed  CAS  Google Scholar 

  28. Doig CJ, Sutherland LR, Sandham JD, Fick GH, Verhoef M, Meddings JB (1998) Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med 158:444–451

    Article  PubMed  CAS  Google Scholar 

  29. McNeill JR, Stark RD, Greenway CV (1970) Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol 219:1342–1347

    PubMed  CAS  Google Scholar 

  30. Chiu C-J, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesions in low flow states. Arch Surg 101:478–483

    Article  PubMed  CAS  Google Scholar 

  31. Haglund U, Abe T, Ahren C, Braide I, Lundgren O (1976) The intestinal mucosal lesions in shock. I. Studies on the pathogenesis. Eur Surg Res 8:435–447

    Article  PubMed  CAS  Google Scholar 

  32. Deitch EA, Morrison J, Berg R, Specian RD (1990) Effect of hemorrhagic shock on bacterial translocation, intestinal morphology, and intestinal permeability in conventional and antibiotic-decontaminated rats. Crit Care Med 18:529–536

    Article  PubMed  CAS  Google Scholar 

  33. Deitch EA, Bridges W, Ma L, Berg R, Specian RD, Granger DN (1990) Hemorrhagic shockinduced bacterial translocation: the role of neutrophils and hydroxyl radicals. J Trauma 30:942–952

    Article  PubMed  CAS  Google Scholar 

  34. Russell DH, Barreto JC, Klemm K, Miller TA (1995) Hemorrhagic shock increases gut macromolecular permeability in the rat. Shock 4:50–55

    Article  PubMed  CAS  Google Scholar 

  35. Shute K (1976) Effect of intraluminal oxygen on experimental ischaemia of the small intestine. Gut 17:1001–1006

    Article  PubMed  CAS  Google Scholar 

  36. Baba S, Mizutani K (1981) The intraluminal administration of perfluorochemicalsto to the ischaemic gastrointestinal tract. Aust NZ J Surg 51:468–472

    Article  CAS  Google Scholar 

  37. Salzman AL, Wollert PS, Wang H, et al (1993) Intraluminal oxygenation ameliorates ischemia/reperfusion-induced gut mucosal hyperpermeability in pigs. Circ Shock 40:37–46

    PubMed  CAS  Google Scholar 

  38. Unno N, Menconi MJ, Salzman AL, et al (1996) Hyperpermeability and ATP depletion induced by chronic hypoxia or glycolytic inhibition in Caco-2BBe monolayers. Am J Physiol 270:G1010–G1021

    PubMed  CAS  Google Scholar 

  39. Gores GJ, Flarsheim CE, Dawson TL, et al (1989) Swelling, reductive stress, and cell death during chemical hypoxia in hepatocytes. Am J Physiol 257:C347–C354

    PubMed  CAS  Google Scholar 

  40. Dawson TL, Gores GJ, Nieminen AL, Herman B, Lemasters JJ (1993) Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol 264:C961–C967

    PubMed  CAS  Google Scholar 

  41. Topham R, Goger M, Pearce K, Schultz P (1989) The mobilization of ferritin iron by liver cytosol. A comparison of xanthine and NADH as reducing substrates. Biochem J 261:137–143

    CAS  Google Scholar 

  42. Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalyzed hydroxyl radical formation. J Biol Chem 259:3620–3624

    PubMed  CAS  Google Scholar 

  43. Byler RM, Sherman NA, Wallner JS, Horwitz LD (1994) Hydrogen peroxide cytotoxicity is cultured myocytes is iron dependent. Am J Physiol 266:H121–H127

    PubMed  CAS  Google Scholar 

  44. Braughler JM, Duncan LA, Chase RL (1986) The involvement of iron in lipid peroxidation. J Biol Chem 261:10282–10289

    PubMed  CAS  Google Scholar 

  45. Anderson BO, Brown JM, Harken AH (1991) Mechanisms of neutrophil-mediated tissue injury. J Surg Res 51:170–179

    Article  PubMed  CAS  Google Scholar 

  46. Carden DL, Smith JK, Zimmerman BJ, Korthuis RJ, Granger DN (1989) Reperfusion injury following circulatory collapse: the role of reactive oxygen metabolites. J Crit Care 4:294–307

    Article  CAS  Google Scholar 

  47. Yamaya M, Sekizawa K, Masuda T, Morikawa M, Sawai T, Sasaki H (1995) Oxidants affect permeability and repair of the cultured human tracheal epithelium. Am J Physiol 268:L284–L293

    PubMed  CAS  Google Scholar 

  48. Baker RD, Baker SS, LaRosa K (1995) Polarized Caco-2 cells. Effect of reactive oxygen metabolites on enterocyte barrier function. Dig Dis Sci 40:510–518

    Article  PubMed  CAS  Google Scholar 

  49. Wilson J, Winter M, Shasby DM (1990) Oxidants, ATP depletion, and endothelial permeability to macromolecules. Blood 76:2578–2582

    PubMed  CAS  Google Scholar 

  50. Cutaia M, Parks N (1994) Oxidant stress decreases Na+/H+ antiport activity in bovine pulmonary artery endothelial cells. Am J Physiol 267:L649–L659

    PubMed  CAS  Google Scholar 

  51. Salahudeen AK (1995) Role of lipid peroxidation in H2O2-induced epithelial (LLC-PK1) cell injury. Am J Physiol 268:F30–F38

    PubMed  CAS  Google Scholar 

  52. Welsh MJ, Shasby DM, Husted RM (1985) Oxidants increase paracellular permeability in a cultured epithelial cell line. J Clin Invest 76:1155–1168

    Article  PubMed  CAS  Google Scholar 

  53. Shasby DM, Winter M, Shasby SS (1988) Oxidants and conductance of cultured epithelial monolayers: inositol phospholipid hydrolysis. Am J Physiol 255:C781–C788

    PubMed  CAS  Google Scholar 

  54. Hinshaw DB, Armstrong BC, Burger JM, Beals TF, Hyslop PA (1988) ATP and microfilaments in cellular oxidant injury. Am J Pathol 132:479–488

    PubMed  CAS  Google Scholar 

  55. Hyslop PA, Hinshaw DB, Halsey WA Jr, et al (1988) Mechanism of oxidant-mediated cell injury: the glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 253:1665–1675

    Google Scholar 

  56. Watson AJM, Askew JN, Sandle GI (1994) Characterization of oxidative injury to an intestinal cell line (HT-29) by hydrogen peroxide. Gut 35:1575–1581

    Article  PubMed  CAS  Google Scholar 

  57. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    PubMed  CAS  Google Scholar 

  58. Stuehr DJ, Griffith OW (1994) Mammalian nitric oxide synthases. Adv Enzymol 65:287–346

    Google Scholar 

  59. Unno N, Menconi MJ, Smith M, Fink MP (1995) Nitric oxide mediates interferon-gamma-induced hyperpermeability in cultured human intestinal epithelial monolayers. Crit Care Med 23:1170–1176

    Article  PubMed  CAS  Google Scholar 

  60. Salzman AL, Denenberg AG, Ueta I, O’Connor M, Linn SC, Szabo C (1996) Induction and activity of nitric oxide synthase in cultured human intestinal epithelial monolayers. Am J Physiol 270:G565–G573

    PubMed  CAS  Google Scholar 

  61. Chavez A, Morin MJ, Unno N, Fink MP, Hodin RA (1999) Acquired interferon-y responsiveness during Caco-2 cell differentiation: effects on iNOS gene expression. Gut 44:659–665

    Article  PubMed  CAS  Google Scholar 

  62. Chavez A, Menconi MJ, Hodin RA, Fink MP (1999) Cytokine-induced epithelial hyperpermeability: role of nitric oxide. Crit Care Med 27:2246–2251

    Article  PubMed  CAS  Google Scholar 

  63. Ford H, Watkins S, Reblock K, Rowe M (1997) The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 32:275–282

    Article  PubMed  CAS  Google Scholar 

  64. Middleton SJ, Shorthouse M, Hunter JO (1993) Increased nitric oxide synthesis in ulcerative colitis. Lancet 341:465–466

    Article  PubMed  CAS  Google Scholar 

  65. Alican I, Kubes P (1996) A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol 270:G225–G237

    PubMed  CAS  Google Scholar 

  66. Kubes P (1993) Ischemia-reperfusion in the feline small intestine: a role for nitric oxide. Am J Physiol 264:G143–G149

    PubMed  CAS  Google Scholar 

  67. Hutcheson IR, Whittle BJ, Boughton-Smith NK (1990) Role of nitric oxide in maintaining vascular integrity in endotoxin-induced intestinal damage in the rat. Br J Pharmacol 101:815–820

    Article  PubMed  CAS  Google Scholar 

  68. MacKendrick W, Kaplan M, Hsueh W (1993) Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat. Pediatr Res 34:222–228

    Article  PubMed  CAS  Google Scholar 

  69. Filep JG, Foldes-Filep E, Rousseau U, Sirois P, Fournier A (1993) Vascular responses to endothelin-1 following inhibition of nitric oxide synthesis in the conscious rat. Br J Pharmacol 110:1213–1221

    Article  PubMed  CAS  Google Scholar 

  70. Lopez-Belmonte J, Whittle BJ, Moncada S (1993) The actions of nitric oxide donors in the prevention or induction of injury to the rat gastric mucosa. Br J Pharmacol 108:73–78

    Article  PubMed  CAS  Google Scholar 

  71. Payne D, Kubes P (1993) Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol 265:G189–G195

    PubMed  CAS  Google Scholar 

  72. Niu X, Smith W, Kubes P (1994) Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res 74:1133–1140

    Article  PubMed  CAS  Google Scholar 

  73. Kubes P, Kanwar S, Niu X-F, Gaboury J (1993) Nitric oxide synthesis inhibition induces leukocyte adhesion via Superoxide and mast cells. FASEB J 7:1293–1299

    PubMed  CAS  Google Scholar 

  74. Tepperman BL, Brown JF, Korolkiewicz R, Whittle BJR (1994) Nitric oxide synthase activity, viability and cyclic GMP levels in rat colonic epithelial cells: effect of endotoxin challenge. J Pharmacol Exp Ther 271:1477–1482

    PubMed  CAS  Google Scholar 

  75. Tripp MA, Tepperman BL (1996) Role of calcium in nitric oxide-mediated injury to rat gastric mucosal cells. Gastroenterology 111:65–72

    Article  PubMed  CAS  Google Scholar 

  76. Salzman AL, Menconi MJ, Unno N, et al (1995) Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. Am J Physiol 268: G361–G373

    PubMed  CAS  Google Scholar 

  77. Huie RE, Padmaja S (1993) Reaction of NO with O2. Free Rad Res Commun 18:195–199

    Article  CAS  Google Scholar 

  78. Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with Superoxide. Am J Physiol 268:L699–L722

    PubMed  CAS  Google Scholar 

  79. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not its precursor, nitric oxide. J Biol Chem 269:29409–29415

    PubMed  CAS  Google Scholar 

  80. Szabo C, Saunders C, O’Connor M, Salzman AL (1997) Peroxynitrite causes energy depletion and increases permeability via activation of poly (ADP-ribose) synthetase in pulmonary epithelial cells. Am J Respir Cell Mol Biol 16:105–109

    Article  PubMed  CAS  Google Scholar 

  81. Szabó C, Zingarelli B, O’Connor M, Salzman AL (1996) DNA strand breakage, activation of poly-ADP ribosyl synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93:1753–1758

    Article  PubMed  Google Scholar 

  82. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced oxidation of sulfhydryls. The cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  PubMed  CAS  Google Scholar 

  83. Radi R, Beckman TW, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of Superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  84. Phelps DT, Ferro TJ, Higgins PJ, Shankar R, Parker DM, Johnson A (1995) TNF-α induces peroxynitrite-mediated depletion of lung endothelial glutathione via protein kinase C. Am J Physiol 269:L551–L559

    PubMed  CAS  Google Scholar 

  85. Salgo MG, Bermudez G, Squadrito G, Pryor W (1995) DNA damage and oxidation of thiols peroxynitrite causes in rat thymocytes. Arch Biochem Biophys 322:500–505

    Article  PubMed  CAS  Google Scholar 

  86. Unno N, Menconi MJ, Smith M, Aguirre DG, Fink MP (1997) Nitric oxide-induced derangements in the permeability barrier of cultured intestinal epithelial monolayers: effects of low extracellular pH. Am J Physiol 272:G923–G934

    PubMed  CAS  Google Scholar 

  87. Unno N, Menconi MJ, Fink MP (1997) Peroxynitrous acid (0N00H) increases junctional permeability in human intestinal epithelial monolayers: role of the amiloride sensitive Na+-H+ antiport. Surgery 122:485–492

    Article  PubMed  CAS  Google Scholar 

  88. Menconi MJ, Unno N, Smith M, Aguirre DE, Fink MP (1998) The effect of nitric oxide donors on the permeability of cultured intestinal epithelial monolayers: role of Superoxide, hydroxyl radical, and peroxynitrite. Biochem Biophys Acta 1425:189–203

    Article  PubMed  CAS  Google Scholar 

  89. Que FG, Gores GJ (1996) Cell death by apoptosis: basic concepts and disease relevance for the gastroenterologist. Gastroenterology 110:1238–1243

    Article  PubMed  CAS  Google Scholar 

  90. Hall PA, Coates PJ, Ansari B, Hopwood D (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107:3569–3577

    PubMed  CAS  Google Scholar 

  91. Bernard O, Madesh M, Anup R, Balasubramanian KA (1998) Apoptotic process in the monkey small intestinal epithelium: I. Association with glutathione level and its efflux. Free Rad Biol Med 26:245–252

    Article  Google Scholar 

  92. Merritt AJ, Potten CS, Watson AJM, et al (1995) Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci 108:2261–2271

    PubMed  CAS  Google Scholar 

  93. Hotchkiss RS, Swanson PE, Freeman BD, et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251

    Article  PubMed  CAS  Google Scholar 

  94. Wolf SE, Ikeda H, Matin S, et al (1999) Cutaneous burn increases apoptosis in the gut epithelium of mice. J Am Coll Surg 188:10–16

    Article  PubMed  CAS  Google Scholar 

  95. Coopersmith CM, O’Donnell D, Gordon JI (1999) Bcl-2 inhibits ischemia-reperfusioninduced apoptosis in the intestinal epithelium of transgenic mice. Am J Physiol 276: G677–G686

    PubMed  CAS  Google Scholar 

  96. Rollwagen FM, Yu ZY, Li YY, Pacheco ND (1998) IL-6 rescues enterocytes from hemorrhage induced apoptosis in vivo and in vitro by a bcl-2 mediated mechanism. Clin Immunol Immunopathol 89:205–213

    Article  PubMed  CAS  Google Scholar 

  97. Deb S, Martin B, Sun L, et al (1999) Resuscitation with lactated Ringer’s solution in rats with hemorrhagic shock induces immediate apoptosis. J Trauma 46:582–589

    Article  PubMed  CAS  Google Scholar 

  98. Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145:1323–1336

    PubMed  CAS  Google Scholar 

  99. Wattanasirichaigoon S, Menconi MJ, Delude RL, Fink MP (1999) Lisofylline ameliorates intestinal mucosal barrier dysfunction caused by ischemia and ischemia/reperfusion. Shock 11:269–275

    Article  PubMed  CAS  Google Scholar 

  100. Wattanasirichaigoon S, Menconi MJ, Delude RL, Fink MP (1999) Effect of mesenteric ischemia and reperfusion or hemorrhagic shock on intestinal mucosal permeability and ATP content in rats. Shock 12:127–133

    Article  PubMed  CAS  Google Scholar 

  101. Van Way CW, Dhar A, Reddy R, Evans L, Wógahn B, Helling TS (1996) Changes in adenine nucleotides during hemorrhagic shock and reperfusion. J Surg Res 66:159–166

    Article  PubMed  Google Scholar 

  102. Saikumar P, Dong Z, Patel Y, et al (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401–3415

    Article  PubMed  CAS  Google Scholar 

  103. Feldenberg LR, Thevananther S, del Rio M, de Leon M, Devarajan P (1999) Partial ATP depletion induces Fas-and caspase-mediated apoptosis in MDCK cells. Am J Physiol 276:F837–F846

    PubMed  CAS  Google Scholar 

  104. Ueda N, Kaushal GP, Hong X, Shah SV (1999) Role of enhanced ceramide generation in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Kidney Int 54:399–406

    Article  Google Scholar 

  105. Lieberthal W, Menza SA, Levine JS (1998) Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol 274:F315–F327

    PubMed  CAS  Google Scholar 

  106. Wang Y, Knowlton AA, Christensen TG, Shih T, Borkan SC (1999) Prior heat stress inhibits apoptosis in adenosine triphosphate-depleted renal tubular cells. Kidney Int 55:2224–2235

    Article  PubMed  CAS  Google Scholar 

  107. Vier J, Linsinger G, Hacker G (1999) Cytochrome c is dispensable for fas-induced caspase activation and apoptosis. Biochem Biophys Res Comm 261:71–78

    Article  PubMed  CAS  Google Scholar 

  108. Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K (1998) Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95-and anticancer drug-induced apoptosis. J Exp Med 188:979–984

    Article  PubMed  CAS  Google Scholar 

  109. Lee YJ, Shacter E (1999) Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem 274:19792–19798

    Article  PubMed  CAS  Google Scholar 

  110. Lelli JL, Jr., Becks LL, Dabrowska MI, Hinshaw DB (1998) ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Rad Biol Med 25:694–702

    Article  PubMed  CAS  Google Scholar 

  111. Leist M, Single B, Naumann H, et al (1999) Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 249:396–403

    Article  PubMed  CAS  Google Scholar 

  112. Kitamura Y, Ota T, Matsuoka Y, et al Hydrogen peroxide-induced apoptosis mediated by p53 protein in glial cells. Glia 25:154–164

    Google Scholar 

  113. Ramakrishnan N, Chen R, McClain DE, Bunger R (1998). Pyruvate prevents hydrogen peroxide-induced apoptosis. Free Rad Res 29:283–295

    Article  CAS  Google Scholar 

  114. Bhat NR, Zhang P (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 72:112–119

    Article  PubMed  CAS  Google Scholar 

  115. Goldkorn T, Balaban N, Shannon M, et al (1999) H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells. J Cell Sci 111:3209–3220

    Google Scholar 

  116. Turner FA, Xia F, Azhar G, Zhang X, Liu L, Wei JY (1998) Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 30:1789–1801

    Article  PubMed  CAS  Google Scholar 

  117. Adderley SR, Fitzgerald DJ (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 274:5038–5046

    Article  PubMed  CAS  Google Scholar 

  118. Witenberg B, Kalir HH, Raviv Z, Kletter Y, Kravtsov V, Fabian I (1999) Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 57:823–832

    Article  PubMed  CAS  Google Scholar 

  119. Sonoda S, Watanabe S, Matsumoto Y, Aizu-Yokota E, Kasahara T (1999) FAK is the upstream signal protein of the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line. J Biol Chem 274: 10566–1570

    Article  PubMed  CAS  Google Scholar 

  120. Lieberthal W, Triaca V, Koh JS, Pagano PJ, Levine JS (1998) Role of Superoxide in apoptosis induced by growth factor withdrawal. Am J Physiol 275:F691–F702

    PubMed  CAS  Google Scholar 

  121. Saitoh M, Nishitoh H, Fujii M, et al (1999) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  Google Scholar 

  122. Fang W, Rivard JJ, Ganser JA, et al (1999) Bcl-xL rescues WEHI 231 B lymphocytes from oxidant-mediated death following diverse apoptotic stimuli. J Immunol 155:66–75

    Google Scholar 

  123. Lafon C, Mathieu C, Guerrin M, Pierre O, Vidal S, Valette A (1999) Transforming growth factor beta 1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth Differ 7:1095–1104

    Google Scholar 

  124. Celli A, Que FG, Gores GJ, La Russo NF (1998) Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes. Am J Physiol 275: G749–G757

    PubMed  CAS  Google Scholar 

  125. Aoshiba K, Yasui S, Nishimura K, Nagai A (1999) Thiol depletion induces apoptosis in cultured lung fibroblasts. Am J Respir Cell Mol Biol 21:54–64

    Article  PubMed  CAS  Google Scholar 

  126. Yin Y, Terauchi Y, Solomon GG, et al (1999) Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 391:707–710

    Google Scholar 

  127. Sonoda Y, Kasahara T, Yokota-Aizu E, Ueno M. Watanabe S (1997) A suppressive role of pl25FAK protein tyrosine kinase in hydrogen peroxide-induced apoptosis of T98G cells. Biochem Biophys Res Comm 29:769–774

    Article  Google Scholar 

  128. Ma XL, Kumar S, Gao F, et al (1999) Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685–1691

    Article  PubMed  CAS  Google Scholar 

  129. Huot J, Houle F, Fousseau S, Deschesnes RG, Shah GM, Landry J (1998) SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143:1361–1373

    Article  PubMed  CAS  Google Scholar 

  130. Laderoute KR, Webster KA (1997) Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res 80:336–344

    Article  PubMed  CAS  Google Scholar 

  131. Li J, Bombeck CA, Yang S, Kim YM, Billiar TR (1999) Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem 274:17325–17333

    Article  PubMed  CAS  Google Scholar 

  132. Kim YM, Chung HT, Kim SS, et al (1999) Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signaling. J Neurosci 15:6740–6747

    Google Scholar 

  133. Ushmorov A, Ratter F, Lehmann V, Droge W, Schirrmacher V, Umansky V (1999) Nitricoxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Blood 93:2342–2352

    PubMed  CAS  Google Scholar 

  134. Wei T, Chen C, Hou J, Zhao B, Xin W, Mori A (1999) The antioxidant EPC-K1 attenuates NO-induced mitochondrial dysfunction, lipid peroxidation and apoptosis in cerebellar granule cells. Toxicology 134:117–126

    Article  PubMed  CAS  Google Scholar 

  135. Messmer UK, Ankarcrona M, Nicotera P, Brune B (1994) p53 expression in nitric oxideinduced apoptosis. Febs Lett 355:23–26

    Article  PubMed  CAS  Google Scholar 

  136. Glockzin S, von Knethen A, Scheffner M, Brune B (1999) Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J Biol Chem 274:19581–19586

    Article  PubMed  CAS  Google Scholar 

  137. Menconi MJ, Salzman AL, Unno N, et al (1997) Acidosis induces hyperpermeability in Caco2BBe cultured intestinal epithelial monolayers. Am J Physiol 272:G1007–G1021

    PubMed  CAS  Google Scholar 

  138. Salzman AL, Wang H, Wollert PS, et al (1994) Endotoxin-induced ileal mucosal hyperpermeability in pigs: role of tissue acidosis. Am J Physiol 266:G633–G646

    PubMed  CAS  Google Scholar 

  139. Doglio GR, Pusajo JF, Egurrola MA, et al (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19:1037–1040

    Article  PubMed  CAS  Google Scholar 

  140. Gonzalez PK, Doctorow SR. Malfroy B, Fink MP (1997) Role of oxidant stress and iron delocalization in acidosis-induced intestinal epithelial hyperpermeability. Shock 8:108–114

    Article  PubMed  CAS  Google Scholar 

  141. Siesjo BK, Bendek G. Koide T, Westergerg E, Wieloch T (1985) Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cerebr Blood Flow Metab 5:253–258

    Article  CAS  Google Scholar 

  142. Bralet J, Bouvier C, Schrieber L, Boquillon M (1991) Effect of acidosis on lipid peroxidation in brain slices. Brain Res 539:175–177

    Article  PubMed  CAS  Google Scholar 

  143. Rodeheaver DP, Schnellman RG (1993) Extracellular acidosis ameliorates metabolicinhibitor-induced and potentiates oxidant-induced cell death in renal proximal tubules. J Pharmacol Exp Ther 265:1355–1360

    PubMed  CAS  Google Scholar 

  144. Burns KD, Homma T, Breyer MD, Harris RC (1991) Cytosolic acidification stimulates a calcium influx that activates Na+-H+ exchange in LLC-PKX1 cells. Am J Physiol 261:F617–F625

    PubMed  CAS  Google Scholar 

  145. Trivedi B, Danforth WH (1966) Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241:4110–4114

    PubMed  CAS  Google Scholar 

  146. Kuhne W, Besselmann M, Noll T, Muhs A, Watanabe H, Piper HM (1993) Disintegration of cytoskeletal structure of actin filaments in energy-depleted endothelial cells. Am J Physiol 264:H1599–H1608

    PubMed  CAS  Google Scholar 

  147. Hinshaw DB, Burger JM, Miller MT, Adams JA, Beals TF, Omann GM (1993) ATP depletion induces an increase in the assembly of a labile pool of polymerized actin in endothelial cells. Am J Physiol 264:C1171–C1179

    PubMed  CAS  Google Scholar 

  148. Pollard TD (1990) Actin. Curr Opin Cell Biol 2:33–40

    Article  PubMed  CAS  Google Scholar 

  149. Fink MP (1997) Cytopathic hypoxia in sepsis. Acta Anaesthesiol Scand Suppl 100:87–95

    Article  Google Scholar 

  150. Fink MP (2001) Cytopathic hypoxia: mitochondrial dysfunction as a mechanism contributing to organ dysfunction in sepsis. Crit Care Clin North Am 17:219–237

    Article  CAS  Google Scholar 

  151. VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1226

    Article  PubMed  CAS  Google Scholar 

  152. Unno N, Wang H, Menconi MJ, et al (1997) Inhibition of inducible nitric oxide synthase ameliorates lipopolysaccharide-induced gut mucosal barrier dysfunction in rats. Gastroenterology 113:1246–1257

    Article  PubMed  CAS  Google Scholar 

  153. King CJ, Tytgat S, Delude RL, Fink MP (1999) Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med 27:2518–2524

    Article  PubMed  CAS  Google Scholar 

  154. Colgan SP, Resnick MB, Parkos CA, et al (1994) IL-4 directly modulates function of a model human intestinal epithelium. J Immunol 153:2122–2129

    PubMed  CAS  Google Scholar 

  155. Colgan SP, Parkos CA, Matthews JB, et al (1994) Interferon-y induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol 267:C402–C410

    PubMed  CAS  Google Scholar 

  156. Adams RB, Planchon SM, Roche JK (1993) IFN-y modulation of epithelial barrier function: time course, reversibility, and site of cytokine binding. J Immunol 150:2356–2363

    PubMed  CAS  Google Scholar 

  157. Nathanson MH (1994) Cellular and subcellular calcium signalling in gastrointestinal epithelium. Gastroenterology 106:1349–1364

    PubMed  CAS  Google Scholar 

  158. Nichols DG (1986) Intracellular calcium homeostasis. Br Med Bull 42:353–258

    Google Scholar 

  159. McCoy CE, Selvaggio AM, Alexander EA, Schwartz JH (1988) Adenosine triphosphate depletion induces a rise in cytosolic free calcium in canine renal epithelial cells. J Clin Invest 82:1326–1332

    Article  PubMed  CAS  Google Scholar 

  160. Trump BF, Berezesky IK (1992) The role of cytosolic Ca in cell injury, necrosis and apoptosis. Curr Opin Cell Biol 4:227–232

    Article  PubMed  CAS  Google Scholar 

  161. Unno N, Baba S, Fink MP (1998) Cytosolic ionized Ca2+ modulates chemical hypoxia-induced hyperpermeability in intestinal epithelial monolayers. Am J Physiol 274:G700–G708

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Venkataraman, R., Fink, M.P. (2002). Mechanisms Responsible for Intestinal Barrier Dysfunction in Critical Illness. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics