Skip to main content

Ischemia-Induced Derangements in the Actin Cytoskeleton: Mechanisms and Functional Significance

  • Chapter
Mechanisms of Organ Dysfunction in Critical Illness

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

  • 102 Accesses

Abstract

Ischemia remains the leading cause of acute renal failure in adults [1, 2]. To fully understand acute renal failure and devise optimal treatment regimens, it is necessary to have knowledge of the mechanisms of cellular injury and their effects on organ function. Therefore, the focus of this chapter will be to present the current understanding of the mechanisms of cellular injury emphasizing the structural, physiological, and biochemical changes that occur in proximal tubule cells as a result of ischemic injury. Special emphasis will be given to the mechanism of actin alterations during ischemia. These changes play a major mechanistic role in the pathophysiology of the decreased glomerular filtration rate (GFR) and ion transport that are the hallmarks of acute renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liano F, Pascual J (1996) Madrid acute renal failure study group. Epidemiology of acute renal failure: A prospective, multicenter, community-based study. Kidney Int 50: 811–818

    Article  PubMed  CAS  Google Scholar 

  2. Kelly KJ, Molitoris BA (2000) Acute renal failure in the new millennium: Time to consider combination therapy. Semin Nephrol 20:4–19

    PubMed  CAS  Google Scholar 

  3. Sutton TA, Molitoris BA (1998) Mechanisms of cellular injury in ischemic ARE Semin Nephrol 18:490–497

    CAS  Google Scholar 

  4. Molitoris BA (1997) Putting the actin cytoskeleton into perspective: Pathophysiology of ischemic alterations. Am J Physiol 272:F430–F433

    PubMed  CAS  Google Scholar 

  5. Venkatachalam M, Bernard D, Donohoe J, et al (1978) Ischemic damage and repair in the rat proximal tubule. Differences among S1, S2, and S3 segments. Kidney Int 14:31–49

    Article  PubMed  CAS  Google Scholar 

  6. Alejandro V, Scandling JD, Sibley RK, et al (1995) Mechanisms of filtration failure during postischemic injury of the human kidney. J Clin Invest 95:820–831

    Article  PubMed  CAS  Google Scholar 

  7. Kellerman PS, Clark RAF, Hoilien CA, et al (1990) Role of microfilaments in maintenance of proximal tubule structural and functional integrity. Am J Physiol 259:F279–F285

    PubMed  CAS  Google Scholar 

  8. Kroshian VM, Sheridan AM, Lieberthal W (1994) Functional and cytoskeletal changes induced by sublethal injury in proximal tubular epithelial cells. Am J Physiol 266:F21–F30

    PubMed  CAS  Google Scholar 

  9. Molitoris BA, Geerdes A, Mclntosh JR. (1991) Dissociation and redistribution of Na+, K+-ATPase from its surface membrane actin cytoskeleton complex during cellular ATP depletion. J Clin Invest 88:462–469

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Doctor RB, Mandel LJ (1994) Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury. Am J Physiol 267: C784–C795

    PubMed  CAS  Google Scholar 

  11. Chen J, Cohn JA, Mandel LJ (1995) Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc Natl Acad Sci USA 92:7495–7499

    Article  PubMed  CAS  Google Scholar 

  12. Chen J, Mandel LJ (1997) Unopposed phosphatase action initiates ezrin dysfunction: a potential mechanism for anoxic injury. Am J Physiol 273:C710–C716

    PubMed  CAS  Google Scholar 

  13. Wagner MC, Molitoris BA (1997) ATP depletion alters myosin 1β cellular location in LLC-PK1 cells. Am J Physiol 272:C1680–C1690

    PubMed  CAS  Google Scholar 

  14. Alejandro V, Nelson WJ, Huie P, et al (1995) Postischemic injury, delayed function and Na+/K+-ATPase distribution in the transplanted kidney. Kidney Int 48:1308–1315

    Article  PubMed  CAS  Google Scholar 

  15. Molitoris BA, Falk SA, Dahl RH (1989) Ischemia-induced loss of epithelial polarity. Role of the tight junction. J Clin Invest 84:1334–1339

    Article  PubMed  CAS  Google Scholar 

  16. Canfield PE, Geerdes AM, Molitoris BA (1991) Effect of reversible ATP depletion on tightjunction integrity in LLC-PK1 cells. Am J Physiol 261:F1038–F1045

    PubMed  CAS  Google Scholar 

  17. Mandel LE, Bacallao R, Zampighi G (1993) Uncoupling of the molecular ‘fence’ and paracellular ‘gate’ functions in epithelial tight junctions. Nature 361:552–555

    Article  PubMed  CAS  Google Scholar 

  18. Tsukamoto T, Nigam SK (1997) Tight junction proteins form large complexes and associate with the cytoskeleton in an ATP depletion model for reversible junction assembly. J Biol Chem 272:16133–16139

    Article  PubMed  CAS  Google Scholar 

  19. Molitoris BA, Wagner, MC (1996) Surface membrane polarity of proximal tubular cells: Alterations as a basis for malfunction. Kidney Int 49:1592–1597

    Article  PubMed  CAS  Google Scholar 

  20. Gopalakrishnan S, Raman N, Atkinson SJ, et al (1998) Rho GTPase signaling regulates tight junction assembly and protects tight junctions during ATP-depletion. Am J Physiol 275: C798–C809

    PubMed  CAS  Google Scholar 

  21. Mandel LJ, Doctor RB, Bacallao R (1994) ATP depletion: a novel method to study junctional properties in epithelial tissues. II. Internalization of Na+-K+-ATPase and cadherin. J Cell Sci 107:3315–3324

    PubMed  CAS  Google Scholar 

  22. Ketcham CA, Bacallao R (1997) E-cadherin is mis-sorted by renal epithelial cells recovering from chemical anoxia. J Am Soc Nephrol 8:589a (Abst)

    Google Scholar 

  23. Rascusen LC, Fivush BA, Li YL, et al (1991) Dissociation of tubular cell detachment and tubular cell death in clinical and experimental ‘acute tubular necrosis’. Lab Invest 64:546–556

    Google Scholar 

  24. Gailit JD, Coldflesh D, Rabiner I, et al (1993) Redistribution and dysfunction of integrins in cultured renal epithelial cells exposed to oxidative stress. Am J Physiol 264:F149–F157

    PubMed  CAS  Google Scholar 

  25. Raman N, Atkinson SJ (1999) Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery. Am J Physiol 276:C1312–C1324

    PubMed  CAS  Google Scholar 

  26. Goligorsky M, Lieberthal W, Racusen L, et al (1993) Integrin receptors in renal tubular epithelium: New insights into pathophysiology of acute renal failure. Am J Physiol 264: F1–F8

    PubMed  CAS  Google Scholar 

  27. Noiri E, Gailit J, Sheth D, et al (1994) Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int 46:1050–1058

    Article  PubMed  CAS  Google Scholar 

  28. Noiri E, Romanov V, Forest T, et al (1995) Pathophysiology of renal tubular obstruction: Therapeutic role of synthetic RGD peptides in acute renal failure. Kidney Int 48:1375–1385

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz N, Hosford M, Sandoval RM, et al (1999) Ischemia activates actin depolymerizing factor: role in proximal tubule microvillar actin alterations. Am J Physiol 276:F544–F551

    PubMed  CAS  Google Scholar 

  30. Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Ann Rev Cell Dev Biol 15:185–230

    Article  CAS  Google Scholar 

  31. Rosenblatt J, Agnew BJ, Abe H, Bamburg JR, Mitchison TJ (1997) Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol 136:1323–1332

    Article  PubMed  CAS  Google Scholar 

  32. Carlier MF, Laurent V, Santolini J, et al (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1323

    Article  PubMed  CAS  Google Scholar 

  33. Lappalainen P, Drubin DG (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388:78–82.

    Article  PubMed  CAS  Google Scholar 

  34. McGough A, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138:771–781

    Article  PubMed  CAS  Google Scholar 

  35. Nishida E. (1985) Opposite effects of cofilin and profilin from porcine brain on rate of exchange of actin-bound adenosine 5’-triphosphate. Biochemistry 24:1160–1164

    Article  PubMed  CAS  Google Scholar 

  36. Agnew BJ, Minamide LS, Bamburg JR. (1995) Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem 270:17582–17587

    Article  PubMed  CAS  Google Scholar 

  37. Meberg PJ, Ono S, Minamide LS, Takahashi M, Bamburg JR. (1998) Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell Motil Cytoskel 39:172–190

    Article  CAS  Google Scholar 

  38. Arber S, Barbayannis FA, Hanser H, et al(1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–808

    Article  PubMed  CAS  Google Scholar 

  39. Yang N, Higuchi O, Ohashi K, et al (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    Article  PubMed  CAS  Google Scholar 

  40. Djafarzadeh S, Niggli V (1997) Signaling pathways involved in dephosphorylation and localization of the actin-binding protein cofilin in stimulated human neutrophils. Exp Cell Res 236:427–435

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki K, Yamaguchi T, Tanaka T, et al (1995) Activation induces dephosphorylation of cofilin and its translocation to plasma membranes in neutrophil-like differentiated HL-60 cells. J Biol Chem 270:19551–19556

    Article  PubMed  CAS  Google Scholar 

  42. Ressad F, Didry D, Xia GX, et al (1998) Kinetic analysis of the interactions of actin-depolymerizing factor (ADF)/cofilin with G-and F-actins. J Biol Chem 273:20894–20902.

    Article  PubMed  CAS  Google Scholar 

  43. Maciver SK (1998) How ADF/cofilin depolymerizes actin filaments. Curr Opin Cell Biol 10:140–144

    Article  PubMed  CAS  Google Scholar 

  44. Ashworth SL, Temm CJ, Weinberger RP, Molitoris BA (2000) Ischemia induces tropomyosin dissociation from the proximal tubule cell terminal web. Mol Biol Cell 11:556A (Abst)

    Google Scholar 

  45. Bamburg JR, Bray D (1987) Distribution and cellular localization of actin depolymerizing factor. J Cell Biol 105:2817–2825

    Article  PubMed  CAS  Google Scholar 

  46. Yonezawa N, Nishida E, Koyasu S, et al (1987) Distribution among tissues and intracellular localization of cofilin, a 21 kD actin binding protein. Cell Struct Funct 12: 443–452

    Article  PubMed  CAS  Google Scholar 

  47. Nagaoka R, Abe H, Kusano K, Obinata T (1995) Concentration of cofilin, a small actin-binding protein, at the cleavage furrow during cytokinesis. Cell Motil Cytoskel 30:1–7

    Article  CAS  Google Scholar 

  48. Nishida E, Iida K, Yonezawa N, Koyasu S, Yahara I, Sakai H (1987) Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA 84:5262–5266

    Article  PubMed  CAS  Google Scholar 

  49. Maciver SK, Zot HG, Pollard TD.(1991) Characterization of actin filament severing by actophorin from Acanthamoeba castellanii. J Cell Biol 115:1611–1620

    Article  PubMed  CAS  Google Scholar 

  50. Du J, Frieden C (1998) Kinetic studies on the effect of yeast cofilin on yeast actin polymerization. Biochemistry 37:13276–13284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molitoris, B.A., Ashworth, S.L., Sutton, T.A. (2002). Ischemia-Induced Derangements in the Actin Cytoskeleton: Mechanisms and Functional Significance. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics