Skip to main content

A Test Set for Molecular Dynamics Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 24))

Abstract

This article describes a collection of model problems for aiding numerical analysts, code developers and others in the design of computational methods for molecular dynamics (MD) simulation. Common types of calculations and desirable features of algorithms are surveyed, and these are used to guide selection of representative models. By including essential features of certain classes of molecular systems, but otherwise limiting the physical and quantitative details, it is hoped that the test set can help to facilitate cross-disciplinary algorithm and code development efforts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comp. Phys., 73 (1987), pp. 325–348

    Article  Google Scholar 

  2. R. Krasny and Z.-H. Duan, Treecode algorithms for computing nonbonded particle interactions, this volume.

    Google Scholar 

  3. M. Tuckerman, G. Martyna and B.J. Berne, Molecular Dynamics algorithms for multiple time scales: Systems with Long Range Forces, J. Chem. Phys., 94 (1991), pp. 6811–6815

    Article  CAS  Google Scholar 

  4. R.D. S Keel and J. Izaguirre, The Five Femtosecond Time Step Barrier, in P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, R. D. Skeel, Computational Molecular Dynamics, Challenges, Methods, Ideas (Springer-Verlag), pp. 303–318, (1998)

    Google Scholar 

  5. T. Schlick, R. D. Skeel, A. T. Brunger, L. V. Kalé, J. Hermans, K. Schulten and J.A. Board Jr. , Algorithmic Challenges in Computational Molecular Biophysics, J. Comp. Phys., 151 (1999), pp. 9–48

    Article  Google Scholar 

  6. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984), pp. 511–519

    Article  Google Scholar 

  7. G.J. Martyna, M.E. Tuckerman, D.J. Tobias, and M.L. Klein, Explicit reversible integration algorithms for extended systems, Mol. Phys. 87 (1996), pp. 1117

    Article  CAS  Google Scholar 

  8. S.D. Bond, B.J. Leimkuhler and B.B. Laird, The Nose-Poincare method for constant temperature molecular dynamics, J. Comp. Phys. 151 (1999), pp. 114–134

    Article  CAS  Google Scholar 

  9. J.J. Moré, B.S. Garbow and K.E. Hillstrom, Testing Unconstrained Optimization Software, ACM TOMS, 7 (1981), 17–41

    Article  Google Scholar 

  10. E.D. Dolan and J.J. Moré, Benchmarking optimization software with COPS, Mathematics and Computer Science Division, Argonne National Laboratory, Technical Report ANL/MCS-246, November 2000 (Revised November 30), http: //www-unix.mcs.any.gov/~more/cops/

    Google Scholar 

  11. C.A. Floudas, P.M. Pardalos, C. Adjiman, W.R. Esposito, Z.H. Gümüs, S.T. Harding, J.L. Klepeis, C.A. Meyer, C.A. Schweiger, Handbook of test problems in local and global optimization, Volume 33 of Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Dordrecht, 1999

    Google Scholar 

  12. W.M. Lioen and J.J.B. De Swart, Test set for initial value problems, Report MAS-R 9832, Centrum voor Wiskunde en Informatica, Amsterdam http://www.cwi.nl/cwi/projects/IVPtestset

    Google Scholar 

  13. E. Hairer and G. Wanner, Solving ordinary differential equations. Volume II, Springer Series in Comput. Mathematics, Vol. 14, Springer-Verlag 1996, see also http://www.zib.de/uwe.poehle/ode.html

    Google Scholar 

  14. Proceedings of the first meeting on the critical assessment of techniques for protein structure prediction, Proteins: Structure, Function and Genetics, 23 (1995), see also http://predictioncenter.llnl.gov

    Google Scholar 

  15. B.J. Alder and T.E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys., 27 (1957), pp. 1208–1209

    Article  CAS  Google Scholar 

  16. J.D. Weeks, D. Chandler, and H.C. Andersen, Role of repulsive forces in determining the equilibrium structure of simple liquids, J. Chem. Phys., 54 (1971), pp. 5237–5247

    Article  CAS  Google Scholar 

  17. R.M. Stratt, S.L. Holmgren, and D. Chandler, Constrained impulsive molecular dynamics, Mol. Phys., 42 (1981), pp. 1233–1243

    Article  CAS  Google Scholar 

  18. S.-H. Suh, L. Mieryteran, H.S. White, and H.T. Davis, Molecular dynamics study of the primitive model of 1–3 electrolyte solutions, Chem. Phys., 142 (1990), pp. 203–211

    Article  CAS  Google Scholar 

  19. Y.A. Houndonougbo, B.B. Laird and B.J. Leimkuhler, Molecular dynamics algorithms for mixed hard-core/continuous potentials, Mol. Phys., 98 (1999), pp. 309–316

    Article  Google Scholar 

  20. A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev. A, 136 (1964), pp. 405–411

    CAS  Google Scholar 

  21. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules, Phys. Rev., 159 (1967), pp. 98–103

    Article  CAS  Google Scholar 

  22. R.D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci., 30 (1983), p. 2669–2671

    Article  Google Scholar 

  23. F.M. Lasagni, Integration methods for Hamiltonian differential equations, Unpublished manuscript, (1990).

    Google Scholar 

  24. E. Hairer Backward analysis of numerical integrators and symplectic methods, in K. Burrage, C. Baker, P. v.d. Houwen, Z. Jackiewicz, and P. Sharp, editors, Scientific Computation and Differential Equations, volume 1 of Annals of Numer. Math., pp. 107–132, Amsterdam, J.C. Baltzer. 1994, Proceedings of the SCADE′93 conference, Auckland, New-Zealand, January 1993

    Google Scholar 

  25. G. Benettin and A. Giorgilli, On the Hamiltonian Interpolation of Near to the Identity Symplectic Mappings, J. Statist. Phys., 74 (1994), pp. 1117–1143

    Article  Google Scholar 

  26. A. Rahman and F.H. Stillinger, Molecular dynamics study of liquid water, J. Chem. Phys., 55 (1971), pp. 3336–3359

    Article  CAS  Google Scholar 

  27. J.P. Ryckaert, G. Ciccotti and H. J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comp. Phys., 23 (1977), pp. 327–341

    Article  CAS  Google Scholar 

  28. J.A. Mccammon, B.R. Gelin and M. Karplus, Dynamics of folded proteins, Nature, 267 (1977), pp. 585–590

    Article  CAS  PubMed  Google Scholar 

  29. A.K. Mazur, V.E. Dorofeev and R.A. Abagyan, Derivation and testing of explicit equations of motion for polymers described by internal coordinates, J. Comp. Phys., 92 (1991), pp. 261–272

    Article  CAS  Google Scholar 

  30. S. He and H.A. Scheraga, Macromolecular conformational dynamics in torsional angle space, J. Chem. Phys., 108 (1998), pp. 271–286

    Article  CAS  Google Scholar 

  31. S.-H. Lee, K. Palmo and S. Krimm, A new formalism for molecular dynamics in internal coordinates, J. Chem. Phys., to appear

    Google Scholar 

  32. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comp. Chem, 4 (1983), pp. 187–217

    Article  CAS  Google Scholar 

  33. A.D. Mackerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher Iii, B. Roux, M. Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, An all-atom empirical potential for molecular modeling and dynamics of proteins, J. Phys. Chem., 102 (1998), pp. 3586–3616

    Article  CAS  Google Scholar 

  34. S.J. Weiner, P.A. Kollman, D.T. Nguyen, and D.A. Case, An all atom force field for simulations of proteins and nucleic acids, J. Comp. Chem., 7 (1986), pp. 230–252 http://www.amber.ucsf.edu/amber/

    Article  CAS  Google Scholar 

  35. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, Jr, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell and P.A. Kollman, A second generation force field for the simulation of proteins and nucleic acids, J. Am. Chem. Soc, 117 (1995), pp. 5179–5197

    Article  CAS  Google Scholar 

  36. W.L. Jorgensen and J. Tirado-Rives, The OPLS potential functions for proteins. Energy minimization for crystals of cyclic peptides and crambin, J. Am. Chem. Soc., 110 (1988), pp. 1657–1666

    Article  CAS  Google Scholar 

  37. http://bmbiris.bmb.uga.edu/wampler/8200/using-ff/mmrefs.html.

    Google Scholar 

  38. T. Schlick, Optimization methods in computational chemistry, in Reviews in Computational Chemistry, Volume 3, Chapter 1, pages 1–71, K. B. Lipkowitz and D. B. Boyd eds., VCH Publishers, New York (1992)

    Chapter  Google Scholar 

  39. N.B. Slater, Classical motion under a Morse potential, Nature, 180 (1957), pp. 1352–1353

    Article  Google Scholar 

  40. M. Mandziuk and T. Schlick, Resonance in chemal systems simulated by the implicit midpoint method, Chem. Phys. Lett., 237 (1995), pp. 525–535

    Article  CAS  Google Scholar 

  41. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian problems, Chapman and Hall, 1994.

    Google Scholar 

  42. J. Frank, W. Huang and B. Leimkuhler, Geometric integrators for classical spin systems, J. Comp. Phys., 133 (1997), pp. 160–172.

    Article  Google Scholar 

  43. H.C. Andersen, Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations, J. Comp. Phys., 52 (1983), pp. 24–34

    Article  CAS  Google Scholar 

  44. B. Leimkuhler and R.D. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems, J. Comp. Phys., 112 (1994), pp. 117–125

    Article  Google Scholar 

  45. E. Barth, K. Kuczera, B. Leimkuhler and R.D. Skeel, Algorithms for constrained molecular dynamics, J. Comp. Chem., 16 (1995), pp. 1192–1209

    Article  CAS  Google Scholar 

  46. D.J. Evans, Computer “experiment” for nonlinear thermodynamics of Couette flow, J. Chem. Phys., 78 (1983), pp. 3297–3302

    Article  CAS  Google Scholar 

  47. R.J. Loncharich, B.R. Brooks and R.W. Pastor, Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-Acetylalanyl-N′-Methylamide, Biopolymers, 32 (1992), pp. 523–535

    Article  CAS  PubMed  Google Scholar 

  48. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys., 52 (1984), pp. 255–268

    Article  Google Scholar 

  49. J.B. Sturgeon and B.B. Laird, Symplectic algorithm for constant-pressure molecular-dynamics using a Nose-Poincare thermostat, J. Chem. Phys. 112 (2000), 3474

    Article  CAS  Google Scholar 

  50. G.J. Martyna, M.L. Klein, and M.E. Tuckerman, Nose-Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys., 97 (1992), pp. 2635–2643

    Article  Google Scholar 

  51. W.G. Hoover, C.G. Hoover, and D.J. Isbister, Chaos, ergodic convergence, and fractal instability for a thermostatted canonical harmonic oscillator, Phys. Rev. E, 63 (2001), 026029

    Article  Google Scholar 

  52. D. Okunbor and R.D. Skeel, Canonical numerical methods for molecular dynamics simulations, J. Comp. Chem., 15 (1994), pp. 72–79

    Article  CAS  Google Scholar 

  53. J.L. Yarnell, M.J. Katz, R.G. Wenzel and S.H. Koenig, Structure factor and radial distribution function for liquid argon at 85°K, Phys. Rev. A, 7 (1973), pp. 2130–2144

    Article  CAS  Google Scholar 

  54. A.K. Soper, On the determination of the pair correlation function from liquid structure factor measurements, Chem. Phys., 107 (1986), pp. 61–74

    Article  CAS  Google Scholar 

  55. M.P. Allen and D.J. Tildesley, Computer simulation of liquids, Oxford Science Publications, 1987

    Google Scholar 

  56. D.C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press, 1995, http://uk.cambridge.org/physics/resource

    Google Scholar 

  57. D. Frenkel and B. Smit, Understanding molecular simulation. From algorithms to applications, Academic Press, 1996

    Google Scholar 

  58. H. Gould and J. Tobochnik, An introduction to computer simulation methods: Applications to physical systems, Addison-Wesley, 1988

    Google Scholar 

  59. J.A. Izaguirre, S. Reich and R.D. Skeel, Longer time steps for molecular dynamics, J. Chem. Phys, 110 (1999), pp. 9853–9864

    Article  CAS  Google Scholar 

  60. F.H. Stillinger, Theory and molecular models for water, Adv. Chem. Phys., 31 (1975), pp. 1–101

    Article  CAS  Google Scholar 

  61. F.H. Stillinger, Water revisited, Science, 209 (1980), pp. 451–457

    Article  CAS  PubMed  Google Scholar 

  62. W. Jorgensen, J. Chandrasekar, J. Madura and R. Impey and M. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79 (1983), pp. 926–935

    Article  CAS  Google Scholar 

  63. H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren and J. Hermans, in Intermolecular Forces, B. Pullman, Editor, Reidel, Dordrecht, 1981

    Google Scholar 

  64. F.H. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys., 60 (1974), pp. 1545–1557

    Article  CAS  Google Scholar 

  65. M.W. Mahoney and W.L. Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J. Chem. Phys., 112 (2000), pp. 8910–8922

    Article  CAS  Google Scholar 

  66. K. Toukan and A. Rahman, Molecular dynamics study of atomic motions in water, Phys. Rev. B., 32 (1985), pp. 2643–2648

    Article  Google Scholar 

  67. H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem., 91 (1987), pp. 6269–6271

    Article  CAS  Google Scholar 

  68. S.J. Stuart and B.J. Berne, Effects of Polarizability on the Hydration of the Chloride Ion, J. Phys. Chem., 100 (1996), pp. 11934–11943

    Article  CAS  Google Scholar 

  69. J. Anderson, J.J. Ullo and S. Yip, Molecular dynamics simulation of dielectric properties of water, J. Chem. Phys., 87 (1987), pp. 1726–1732

    Article  CAS  Google Scholar 

  70. R.R. Gabdoulline and Chong Zheng, Effects of the cutoff center on the mean potential and pair distribution functions in liquid water, J. Comp. Chem., 16 (1995), pp. 1428–1433

    Article  CAS  Google Scholar 

  71. M. Saito, Molecular dynamics simulations of proteins in solution: Artifacts caused by the cutoff approximation, J. Chem. Phys., 101 (1994), pp. 4055–4061

    Article  CAS  Google Scholar 

  72. R.M. Levy and E. Gallicchio, Computer simulations with explicit solvent: Recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects, Annu. Rev. Phys. Chem., 49 (1998), pp. 531–567

    Article  CAS  PubMed  Google Scholar 

  73. A.W. Appel, An efficient program for many-body simulations, SIAM J. Sci Stat. Comput., 6 (1985), pp. 85–103

    Article  Google Scholar 

  74. J. Barnes and P. Hut, A hierarchical O(N log N) force calculation algorithm, Nature, 324 (1986), pp. 446–449

    Article  Google Scholar 

  75. Z.-H. Duan and R. Krasny, An adaptive treecode for computing nonbonded potential energy in classical molecular systems, J. Comp. Chem., 21 (2000), pp. 1–12

    Article  Google Scholar 

  76. R.W. Hockney and J.W. Eastwood, Computer simulation using particles, McGraw-Hill, New York, 1981

    Google Scholar 

  77. T. Darden, D. York and L. Pedersen, Particle mesh Ewald: an N*log(N) method for computing Ewald sums, J. Chem. Phys., 98 (1993), pp. 10089–10092

    Article  CAS  Google Scholar 

  78. Z.-H. Duan and R. Krasny, An Ewald summation based multipole method, J. Chem. Phys., 113 (2000), pp. 3492–3495 http://www. math. lsa. umich. edu/~zduan/math/

    Article  CAS  Google Scholar 

  79. E. Barth and T. Schlick, Overcoming stability limitations in biomolecular dynamics: Combining force splitting via extrapolation with Langevin dynamics in LN, J. Chem. Phys., 109 (1998), pp. 1617–1632

    Article  CAS  Google Scholar 

  80. T. Bishop, R. Skeel and K. Schulten, Difficulties with multiple timestep-ping and the fast multipole algorithm in molecular dynamics, J. Comp. Chem., 18 (1997), pp. 1785–1791

    Article  CAS  Google Scholar 

  81. P. Procacci, M. Marchi and G. Martyna, Electrostatic calculations and multiple time scales in molecular dynamics simulation of flexible molecular systems, J. Chem. Phys., 108 (1998), pp. 8799–8803

    Article  CAS  Google Scholar 

  82. A.K. Soper and M.G. Phillips, A new determination of the structure of water at 25C, Chem. Phys., 107 (1986), pp. 47–60

    Article  CAS  Google Scholar 

  83. J. Zhou, S. Reich and B.R. Brooks, Elastic molecular dynamics with self-consistent flexible constraints, J. Chem. Phys., 112 (2000), pp. 7919–7929

    Article  CAS  Google Scholar 

  84. M. Tuckerman, B.J. Berne and G.J. Martyna, Reversible multiple time scale molecular dynamics, J. Chem. Phys., 97 (1992) pp. 1990–2001

    Article  CAS  Google Scholar 

  85. M. Tuckerman and B.J. Berne, Molecular dynamics in systems with multiple timescales — systems with stiff and soft degrees of freedom and with short and long-range forces, J. Chem. Phys., 95 (1991), pp. 8362–8364

    Article  CAS  Google Scholar 

  86. H. Grubmüller, H. Heller, A. Windemuth and K. Schulten, Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions, Mol. Sim., 6 (1991), pp. 121–142

    Article  Google Scholar 

  87. R. Zhou and B.J. Berne, A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems, J. Chem. Phys., 103 (1995), pp. 9444–9459

    Article  CAS  Google Scholar 

  88. P. Procacci and M. Marchi, Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm, J. Chem. Phys., 104 (1996), pp. 3003–3012

    Article  CAS  Google Scholar 

  89. P. Procacci and B. Berne, Computer simulation of solid C 60 using multiple time-step algorithms, J. Chem. Phys., 101 (1994), pp. 2421–2431

    Article  CAS  Google Scholar 

  90. W.C. Still, A. Tempczyk R.C. Hawley and T. Hendrickson, Semian-alytical treatment of solvation for molecular mechanics and dynamics, J. Am. Chem. Soc., 112 (1990), pp. 6127–6129

    Article  CAS  Google Scholar 

  91. D. Qiu, P.S. Shenkin, F.P. Hollinger and W.C. Still, The GB/SA continuum model for solvations. A fast analytical method for the calculation of approximate Born radii, J. Phys. Chem. A, 101 (1997), pp. 3005–3014

    Article  CAS  Google Scholar 

  92. P.J. Kraulis, MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures, J. of Appl. Cryst., 24 (1991), pp. 946–950. http:/ /www. avatar.se/molscript/

    Article  Google Scholar 

  93. H.B. Thompson, Calculation of Cartesian coordinates and their derivatives from internal molecular coordinates, J. Chem. Phys., 47 (1967), pp. 3407–3410

    Article  CAS  Google Scholar 

  94. J. Hermans, Rationalization of Molecular Models, Methods in Enzymology, 115 (1985), pp. 171–189

    Article  CAS  PubMed  Google Scholar 

  95. H. Bekker, H. J.C. Berendsen and W.F. Van Gunsteren, Force and virial of torsional-angle dependent potentials, J. Comput. Chem., 16 (1995), 527–533

    Article  CAS  Google Scholar 

  96. G. Zhang and T. Schlick, LIN: A new algorithm combining implicit integration and normal mode techniques for molecular dynamics, J. Comp. Chem., 14 (1993), pp. 1212–1233

    Article  CAS  Google Scholar 

  97. D.J. Tobias and C.L. Brooks III, Molecular dynamics with internal coordinate constraints, J. Chem. Phys., 89 (1988), pp. 5115–5127

    Article  CAS  Google Scholar 

  98. E. Barth, M. Mandziuk and T. Schlick, A separating framework for increasing the timestep in molecular dynamics, in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Volume 3, chapter 4, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, ESCOM, Leiden, The Netherlands, 1996

    Google Scholar 

  99. H.B. Grubmüller and Paul Tavan, Molecular dynamics of conformational sub states for a simplified protein model, J. Chem. Phys., 101 (1994), pp. 5047–5057

    Article  Google Scholar 

  100. J.D. Honeycutt and D. Thirumalai, Metastability of the folded states of globular proteins, Proc. Natl. Acad. Sci. USA, 87 (1990), pp. 3526–3529

    Article  CAS  PubMed  Google Scholar 

  101. J.-E. Shea, Y.D. Nochomovitz, Z. Guo and C.L Brooks, III, Exploring the space of protein folding Hamiltonians: The balance of forces in a minimalist ß-barrel model, J. Chem. Phys, 109 (1998), pp. 2895–2903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barth, E., Leimkuhler, B., Reich, S. (2002). A Test Set for Molecular Dynamics Algorithms. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics