Skip to main content

Designing Arenaviral Vaccines

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 263))

Abstract

Several hemorrhagic fevers, including Lassa fever (LF; Lassa virus), Argentinian hemorrhagic fever (AHF; Junin virus), Bolivian hemorrhagic fever (BHF; Machupo virus) and Venezuelan hemorrhagic fever (VHF; Guanarito virus) are caused by arenaviruses. These diseases can be devastating, and often lethal. LCMV, the prototype of the Arenaviridae, can cause aseptic meningitis, and is a known teratogen. Despite the pathogenicity of the arenaviruses, to date only one vaccine (against AHF) has been evaluated in humans. In this chapter we shall review the design of arena viral vaccines. The rational design of a vaccine requires that we consider (a) the viruses themselves, (b) the route(s) by which they infect the unfortunate host, (c) the host immune response induced, (d) possible negative consequences of immunization, and (e) the vaccine approaches available. Some of these topics are discussed in detail in other chapters of this volume, and thus will be described quite briefly below.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aichele P, Hengartner H, Zinkernagel RM Schulz M (1990) Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide. J Exp Med 171:1815–1820

    PubMed  CAS  Google Scholar 

  • An LL, Rodriguez F, Harkins S, Zhang J, Whitton JL, (2000) Quantitative and qualitative analyses of the immune responses induced by a multivalent minigene DNA vaccine. Vaccine 18:2132–2141

    PubMed  CAS  Google Scholar 

  • Armstrong LR, Dembry LM, Rainey PM, Russi MB, Khan AS, Fischer SH, Edberg SC, Ksiazek TG, Rollin PE, Peters CJ (1999) Management of a Sabia virus-infected patients in a US hospital. Infect Control Hosp Epidemiol 20:176–182

    PubMed  CAS  Google Scholar 

  • Auperin DD, Romanowski V, Galinski M, Bishop DHL (1984) Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy an ambisense viral s RNA. J Virol 52:897–904

    PubMed  CAS  Google Scholar 

  • Baldridge JR, Buchmeier MJ (1992) Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J Virol 66: 4252–4257

    PubMed  CAS  Google Scholar 

  • Barton LL, Mets MB (1999) Lymphocytic choriomeningitis virus: pediatric pathogen and fetal teratogen. Pediatr Infect Dis J 18:540–541

    PubMed  CAS  Google Scholar 

  • Barton LL, Peters CJ, Ksiazek TG (1995) Lymphocytic choriomeningitis virus: an unrecognized teratogenic pathogen. Emerg Infect Dis 1: 152–153

    PubMed  CAS  Google Scholar 

  • Battegay M, Oehen S, Schulz M, Hengartner H, Zinkernagel RM (1992) Vaccination with a synthetic peptide modulates lymphocytic choriomeningitis virus-mediated immunopathology. J Virol 66:1199–1201

    PubMed  CAS  Google Scholar 

  • Biggar RJ, Schmidt TJ, Woodall JP (1977) Lymphocytic choriomeningitis in laboratory personnel exposed to hamsters inadvertently infected with LCM virus. J Am Vet Med Assoc 171:829–832

    PubMed  CAS  Google Scholar 

  • Biggar RJ, Woodall JP, Walter PD, Haughie GE (1975) Lymphocytic choriomeningitis outbreak associated with pet hamsters. Fifty-seven cases from New York State. JAMA 232:494–500

    PubMed  CAS  Google Scholar 

  • Bowen MD, Peters CJ, Nichol ST (1996) The phylogeny of New World (Tacaribe complex) arenaviruses. Virol 219:285–290

    CAS  Google Scholar 

  • Boyle JS, Brady JL, Lew AM (1998) Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392:408–411

    PubMed  CAS  Google Scholar 

  • Brundler MA, Aichele P, Bachmann M, Kitamura D, Rajewsky K, Zinkernagel RM (1996) Immunity to viruses in B cell-deficient mice:influence of antibodies on virus persistence and on T cell memory. Eur J Immunol 26:2257–2262

    PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Oldstone MBA (1979) Protein structure of lymphocytic choriomeningitis virus: evidence for a cell associated precursor of the virion glycopeptides. Virol 99: 111–120

    CAS  Google Scholar 

  • Childs JE, Glass GE, Korch GW, Ksiazek TG, Leduc LW (1992) Lymphocytic choriomeningitis virus infection and house mouse (Mus musculus) distribution in urban Baltimore. Am J Trop Med Hyg 47:27–34

    PubMed  CAS  Google Scholar 

  • Childs JE, Glass GE, Ksiazek TG, Rossi CA, Oro LG, Leduc JW (1991) Human-rodent contact and infection with lymphocytic choriomeningitis and Seoul viruses in an inner-city population. Am J Trop Med Hyg 44:117–121

    PubMed  CAS  Google Scholar 

  • Cummins D, Bennett D, Fisher-Hoch SP, Farrar B, Machin SJ, McCormick JB (1992) Lassa fever encephalopathy: clinical and laboratory findings. J Trop Med Hyg 95:197–201

    PubMed  CAS  Google Scholar 

  • Cummins D, Fisher-Hoch SP, Walshe KJ, Mackie IJ, McCormick JB, Bennett D, Perez G, Farrar B, Machin SJ (1989) A plasma inhibitor of platelet aggregation in patients with Lassa fever. Br J Haematol 72:543–548

    PubMed  CAS  Google Scholar 

  • Cummins D, McCormick JB, Bennett D, Samba JA, Farrar B, Machin SJ, Fisher-Hoch SP (1990) Acute sensorineural deafness in Lassa fever. JAMA 264:2093–2096

    PubMed  CAS  Google Scholar 

  • de Manzione N, Salas RA, Paredes H, Godoy O, Rojas L, Araoz F. Fulhorst CF, Ksiazek TG, Mills JN, Ellis BA, Peters CJ, Tesh RB (1998) Venezuelan hemorrhagic fever: clinical and epidemiological studies of 165 cases. Clin Infect Dis 26:308–313

    PubMed  Google Scholar 

  • Dekonenko EP, Ivanov AP, Andreeva LS, Tkachenko EA (1985) Appearance of antibodies to two viruses in cerebrospinal fluid of patients with aseptic meningitis. Acta Neurol Scand 71:146–149

    PubMed  CAS  Google Scholar 

  • Di Simone C, Zandonatti MA, Buchmeier MJ (1994) Acidic pH triggers LCMV membrane fusion activity and conformational change in the glycoprotein spike. Virol 198:455–465

    Google Scholar 

  • Donnelly JJ, Ulmer JB, Liu MA (1997) DNA vaccines. Life Sci 60:163–172

    PubMed  CAS  Google Scholar 

  • Dykewicz CA, Dato VM, Fisher-Hoch SP, Howarth MV, Perez-Oronoz GI, Ostroff SM, Gary H Jr, Schonberger LB, McCormick JB (1992) Lymphocytic choriomeningitis outbreak associated with nude mice in a research institute. JAMA 267:1349–1353

    Google Scholar 

  • Eddy GA, Wagner FS, Scott SK, Mahlandt BJ (1975) Protection of monkeys against Machupo virus by the passive administration of Bolivian haemorrhagic fever immunoglobulin (human origin) Bull World Health Organ 52:723–727

    PubMed  CAS  Google Scholar 

  • Enria DA, Maiztegui JI (1994) Antiviral treatment of Argentine hemorrhagic fever. Antiviral Res 23: 23–31

    PubMed  CAS  Google Scholar 

  • Fisher-Hoch SP, McCormick JB, Auperin DD, Brown BG, Castor M, Perez G, Ruo S, Conaty A, Brammer L, Bauer S (1989) Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proc Natl Acad Sci USA 86:317–321

    PubMed  CAS  Google Scholar 

  • Fisher-Hoch SP, Tomori O, Nasidi A, Perez-Oronoz GI, Fakile Y, Hutwagner L, McCormick JB (1995) Review of cases of nosocomial Lassa fever in Nigeria: the high price of poor medical practice. BMJ 311:857–859

    PubMed  CAS  Google Scholar 

  • Fulginiti VA, Eller JJ, Downie AW, Kempe CH (1967) Atypical measles in children previously immunized with inactivated measles virus vaccine. JAMA 202: 1075–1080

    PubMed  CAS  Google Scholar 

  • Fulhorst CF, Bowen MD, Salas RA, De Manzione NM, Duno G, Utrera A, Ksiazek TG, Peters CJ, Nichol ST, De Miller E, Tovar D, Ramos B, Vasquez C, Tesh RB (1997) Isolation and characterization of Pirital virus, a newly discovered South American arenavirus. Am J Trop Med Hyg 56:548–553

    PubMed  CAS  Google Scholar 

  • Fulhorst CF, Bowen MD, Salas RA, Duno G, Utrera A, Ksiazek TG, De Manzione NM, De Miller E, Vasquez C, Peters CJ, Tesh RB (1999) Natural rodent host associations of Guanarito and Piritalviruses (Family Arenaviridae) in central Venezuela. Am J Trop Med Hyg 61:325–330

    PubMed  CAS  Google Scholar 

  • Gandsman EJ, Aaslestad HG, Ouimet TC, Rupp WD (1997) Sabia virus incident at Yale University. Am Ind Hyg Assoc J 58:51–53

    PubMed  CAS  Google Scholar 

  • Hany M, Oehen S, Schulz M, Hengartner H, Mackett M, Bishop DHL, Overton H, Zinkernagel RM (1989) Anti-viral protection and prevention of lymphocytic choriomeningitis or of the local footpad swelling reaction in mice by immunization with vaccinia-recombinant virus expressing LCMV-WE nucleoprotein or glycoprotein. Eur J Immunol 19:417–424

    PubMed  CAS  Google Scholar 

  • Hassett DE, Slifka MK, Zhang J, Whitton JL (2000a). Direct ex vivo kinetic and phenotypic analyses of CD8+ T cell responses induced by DNA immunization. J Virol 74:8286–8291

    PubMed  CAS  Google Scholar 

  • Hassett DE, Whitton JL (1996) DNA Immunization. Trends in Microbiol 4:307–312

    CAS  Google Scholar 

  • Hassett DE, Zhang J, Slifka MK, Whitton JL (2000b) Immune responses following neonatal DNA immunization are long-lived, abundant, and qualitatively similar to those induced by conventional vaccination. J Virol 74:2620–2627

    PubMed  CAS  Google Scholar 

  • Hassett DE, Zhang J, Whitton JL (1999) Induction of antiviral antibodies by DNA immunization requires neither perforin-mediated nor CD8+-T-cell-mediated lysis of antigen-expressing cells. J Virol 73:7870–7873

    PubMed  CAS  Google Scholar 

  • Hinman AR, Fraser DW, Douglas RG, Bowen GS, Kraus AL, Winkler WG, Rhodes WW (1975) Outbreak of lymphocytic choriomeningitis virus infections in medical center personnel. Am J Epidemiol 101:103–110

    PubMed  CAS  Google Scholar 

  • Howard CR (1987) Neutralization of arenaviruses by antibody. Curr Top Microbiol Immunol 134: 117–130

    PubMed  CAS  Google Scholar 

  • Jahrling PB (1983) Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J Med Virol 12:93–102

    PubMed  CAS  Google Scholar 

  • Jahrling PB, Peters CJ (1984) Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain. Infect Immun 44:528–533

    PubMed  CAS  Google Scholar 

  • Johnson KM, Mackenzie RB, Webb PA, Kuns ML (1965) Chronic infection of rodents by Machupo virus. Science 150: 1618–1619

    PubMed  CAS  Google Scholar 

  • Kagi D, Ledennann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37

    PubMed  CAS  Google Scholar 

  • Kapikian AZ, Mitchell RH, Chanock RM, Shvedoff RA, Stewart CE (1969) An epidemiologic study of altered clinical reactivity to respiratory syncitial (RS) virus infection in children previously vaccinated with an inactivated RS vaccine. Am J Epidemiol 89:404–421

    Google Scholar 

  • Kenyon RH, Peters CJ (1986) Cytolysis of Junin infected target cells by immune guinea-pig spleen cells. Microb Pathog 1:453–464

    PubMed  CAS  Google Scholar 

  • Kilgore PE, Ksiazek TG, Rollin PE, Mills IN, Villagra MR, Montenegro MJ, Costales MA, Paredes LC, Peters CJ (1997) Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clin Infect Dis 24:718–722

    PubMed  CAS  Google Scholar 

  • Klavinskis LS, Oldstone MBA, Whitton JL (1989b) Designing vaccines to induce cytotoxic T lymphocytes: protection from lethal viral infection. In: Brown F, Chanock R, Ginsberg H, Lerner R (eds) Vaccines 89. Modern Approaches to New Vaccines Including Prevention of AIDS. Cold Spring Harbor Laboratory, Cold Spring Harbor: pp 485–489.

    Google Scholar 

  • Klavinskis LS, Whitton JL, Joly E, Oldstone MBA (1990) Vaccination and protection from a lethal viral infection: identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virol 178:393–400

    CAS  Google Scholar 

  • Klavinskis LS, Whitton JL, Oldstone MBA (1989a) Molecularly engineered vaccine which expresses an immunodominant T-cell epitope induces cytotoxic T lymphocytes that confer protection from lethal virus infection. J Virol 63:4311–4316

    PubMed  CAS  Google Scholar 

  • Leifer E, Gocke DJ, Bourne H (1970) Lassa fever, a new virus disease of man from West Africa. II. Report of a laboratory-acquired infection treated with plasma from a person recently recovered from the disease. Am J Trop Med Hyg 19:677–679

    PubMed  CAS  Google Scholar 

  • Lisieux T, Coimbra M, Nassar ES, Burattini MN, de Souza LT, Ferreira I, Rocco IM, da Rosa AP, Vasconcelos PF, Pinheiro FP (1994) New arenavirus isolated in Brazil. Lancet 343:391–392

    PubMed  CAS  Google Scholar 

  • Lukashevich IS (1992) Generation of reassortants between African arenaviruses. Virol 188:600–605

    CAS  Google Scholar 

  • Mackenzie RB (1965) Epidemiology of Machupo virus infection. I. Pattern of human infection, San Joaquin, Bolivia, 1962–1964. Am J Trop Med Hyg 14:808–813

    Google Scholar 

  • Maetz HM, Sellers CA, Bailey WC, Hardy GE Jr (1976) Lymphocytic choriomeningitis from pet hamster exposure: a local public health experience. Am J Public Health 66:1082–1085

    PubMed  CAS  Google Scholar 

  • Maiztegui JI (1975) Clinical and epidemiological patterns of Argentine haemorrhagic fever. Bull World Health Organ 52:567–575

    PubMed  CAS  Google Scholar 

  • Maiztegui JI, Fernandez NJ, de Damilano AJ (1979) Efficacy of immune plasma in treatment of Argentine haemorrhagic fever and association between treatment and a late neurological syndrome. Lancet 2:1216–1217

    PubMed  CAS  Google Scholar 

  • Maiztegui JI, McKee KT, Jr. Barrera Oro JG, Harrison LH, Gibbs PH, Feuillade MR, Enria DA, Briggiler AM, Levis SC, Ambrosio AM, Halsey NA, Peters CJ (1998) Protective efficacy of a live attenuated vaccine against Argentine hemorrhagic fever. AHF Study Group. J Infect Dis 177:277–283

    PubMed  CAS  Google Scholar 

  • McCormick JB (1987) Epidemiology and control of Lassa fever. In: Oldstone MBA (ed) Arenaviruses: biology and immunotherapy. Current Topics in Microbiology and Immunology. 134. Springer-Verlag, New York: pp 69–78

    Google Scholar 

  • McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM, Elliott LH, Belmont-Williams R (1986) Lassa fever. Effective therapy with ribavirin. N Engl J Med 314:20–26

    PubMed  CAS  Google Scholar 

  • McCormick JB, Mitchell SW, Kiley MP, Ruo S, Fisher-Hoch SP (1992) Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys. J Med Virol 37:1–7

    PubMed  CAS  Google Scholar 

  • McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES (1987) A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis 155:437–444

    PubMed  CAS  Google Scholar 

  • McKee KT Jr, Huggins JW, Trahan CJ, Mahlandt BG (1988) Ribavirin prophylaxis and therapy for experimental Argentine hemorrhagic fever. Antimicrob Agents Chemother 32: 1304–1309

    PubMed  CAS  Google Scholar 

  • McKee KT Jr. Oro JG, Kuehne AI, Spisso JA, Mahlandt BG (1992) Candid No. 1 Argentine hemorrhagic fever vaccine protects against lethal Junin virus challenge in rhesus macaques. Intervirology 34: 154–163

    PubMed  Google Scholar 

  • McKee KT, Jr, Oro JG, Kuehne AI, Spisso JA, Mahlandt BG (1993) Safety and immunogenicity of a live-attenuated Junin (Argentine hemorrhagic fever) vaccine in rhesus macaques. Am J Trop Med Hyg 48:403–411

    PubMed  Google Scholar 

  • Mercado R (1975) Rodent control programmes in areas affected by Bolivian haemorrhagic fever. Bull World Health Organ 52:691–696

    PubMed  CAS  Google Scholar 

  • Monath TP, Maher M, Casals J, Kissling RE, Cacciapuoti A (1974) Lassa fever in the Eastern Province of Sierra Leone, 1970–1972. II. Clinical observations and virological studies on selected hospital cases. Am 1 Trop Med Hyg 23:1140–1149

    CAS  Google Scholar 

  • Morrison HG, Bauer SP, Lange JV, Esposito JJ, McCormick JB, Auperin DD (1989) Protection of guinea-pigs from Lassa fever by vaccinia virus recombinants expressing the nucleoprotein or the envelope glycoproteins of Lassa virus. Virol 171:179–188

    CAS  Google Scholar 

  • Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Siansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8: 177–187

    PubMed  CAS  Google Scholar 

  • Oehen S, Hengartner H, Zinkernagel RM (1991) Vaccination for disease. Science 251:195–198

    PubMed  CAS  Google Scholar 

  • Oldstone MBA (1975) Virus neutralization and virus-induced immune complex disease. Virus-antibody union resulting in immunoprotection or immunologic injury-two sides of the same coin. Prog Med Virol 19:84–119

    PubMed  CAS  Google Scholar 

  • Park JY, Peters CJ, Rollin PE, Ksiazek TG, Katholi CR, Waites KB, Gray B, Maetz HM, Stephensen CB (1997) Age distribution of lymphocytic choriomeningitis virus serum antibody in Birmingham, Alabama: evidence of a decreased risk of infection. Am J Trop Med Hyg 57:37–41

    PubMed  CAS  Google Scholar 

  • Peters CJ, Jahrling PB, Liu CT, Kenyon RH, McKee KT Jr, Barrera OJG (1987) Experimental studies of arenaviral hemorrhagic fevers. In: Oldstone MBA. (ed) Arenaviruses: biology and immunotherapy. Current Topics in Microbiology and Immunology. 134. pp 5–68

    Google Scholar 

  • Planz O, Ehl S, Furrer E, Horvath E, Brundler MA, Hengartner H, Zinkernagel RM (1997) A critical role for neutralizing-anti body-producing B cells. CD4+ T cells, and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: implications for adoptive immunotherapy of virus carriers. Proc Natl Acad Sci USA 94:6874–6879

    PubMed  CAS  Google Scholar 

  • Planz O, Seiler P, Hengartner H, Zinkernagel RM (1996) Specific cytotoxic T cells eliminate cells producing neutralizing antibodies. Nature 382:726–729

    PubMed  CAS  Google Scholar 

  • Puglielli MT, Browning JL, Brewer AW, Schreiber RO, Shieh WJ, Altman JD, Oldstone MB, Zaki SR, Ahmed R (1999) Reversal of virus-induced systemic shock and respiratory failure by blockade of the lymphotoxin pathway. Nat Med 5:1370–1374

    PubMed  CAS  Google Scholar 

  • Rai SK, Micales BK, Wu MS, Cheung DS, Pugh TD, Lyons GE, Salvato MS (1997) Timed appearance of lymphocytic choriomeningitis virus after gastric inoculation of mice. Am J Pathol 151:633–639

    PubMed  CAS  Google Scholar 

  • Riviere Y, Ahmed R, Southern PJ, Buchmeier MJ, Dutko FJ, Oldstone MBA (1985) The S RNA segment of lymphocytic choriomeningitis virus codes for the nucleoprotein and glycoproteins 1 and 2. J Virol 53:966–968

    PubMed  CAS  Google Scholar 

  • Robinson HL (1999) DNA vaccines: basic mechanism and immune responses. Int J Mol Med 4:549–555

    PubMed  CAS  Google Scholar 

  • Rodriguez F, An LL, Harkins S, Zhang J, Yokoyama M, Widera G, Fuller JT, Kincaid C, Campbell IL, Whitton JL (1998) DNA immunization with minigenes: low frequency of memory CTL and inefficientantiviral protection are rectified by ubiquitination. J Virol 72:5174–5181

    PubMed  CAS  Google Scholar 

  • Rodriguez F, Whitton JL (2000) Enhancing DNA immunization. Virol 268:233–238

    CAS  Google Scholar 

  • Rodriguez F, Zhang J, Whitton JL (1997) DNA immunization: ubiquitination of a viral protein enhances CTL induction, and antiviral protection, but abrogates antibody induction. J Virol 71:8497–8503

    PubMed  CAS  Google Scholar 

  • Roebroek RM, Postma BH, Dijkstra UJ (1994) Aseptic meningitis caused by the lymphocytic choriomeningitis virus. Clin Neurol Neurosurg 96: 178–180

    PubMed  CAS  Google Scholar 

  • Sabattini MS, Gonzalez DRLE, Diaz G, Vega VR (1977) Natural and experimental infection of rodents with Junin virus. Medicina (B Aires) 37:149–161

    Google Scholar 

  • Salas R, de Manzione N, Tesh RB, Rico-Hesse R, Shope RE, Betancourt A, Godoy O, Bruzual R, Pacheco ME, Ramos B (1991) Venezuelan haemorrhagic fever. Lancet 338:1033–1036

    PubMed  CAS  Google Scholar 

  • Salvato MS, Shimomaye E, Oldstone MBA (1989) The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase. Virol 169:377–384

    CAS  Google Scholar 

  • Salvato MS, Shimomaye EM (1989) The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virol 173:1–10

    CAS  Google Scholar 

  • Samoilovich SR, Carballal G, Weissenbacher MC (1983) Protection against a pathogenic strain of Junin virus by mucosal infection with an attenuated strain. Am J Trop Med Hyg 32:825–828

    PubMed  CAS  Google Scholar 

  • Samoilovich SR, Pecci Saavedra J, Frigerio MJ, Weissenbacher MC (1984) Nasal and intrathalamic inoculations of primates with Tacaribe virus: protection against Argentine hemorrhagic fever and absence of neurovirulence. Acta Virol (Prague) (Engl Ed) 28:277–281

    CAS  Google Scholar 

  • Schulz M, Aichele P, Vollenweider M, Bobe FW, Cardinaux F, Hengartner H, Zinkernagel RM (1989) Major histocompatibility complex-dependent T cell epitopes of lymphocytic choriomeningitis virus nucleoprotein and their protective capacity against viral disease. Eur J Immunol 19:1657–1668

    PubMed  CAS  Google Scholar 

  • Selin LK, Varga SM, Wong IC, Welsh RM (1998) Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J Exp Med 188: 1705–1715

    PubMed  CAS  Google Scholar 

  • Sheinbergas MM (1976) Hydrocephalus due to prenatal infection with the lymphocytic choriomeningitis virus. Infection 4: 185–191

    PubMed  CAS  Google Scholar 

  • Sheinbergas MM, Kilchavskiene VV, Tulevichiene JP (1984) Prenatal lymphocytic choriomeningitis (LCM): three new cases. Infection 12:105–106

    PubMed  CAS  Google Scholar 

  • Sheinbergas MM, Lewis VJ, Thacker WL, Verikiene VV (1981) Serological diagnosis in children infected prenatally with lymphocytic choriomeningitis virus. Infect Immun 31:837–838

    PubMed  CAS  Google Scholar 

  • Skinner HH, Knight EH (1973) Natural routes for post-natal transmission of murine lymphocytic choriomeningitis. Lab Anim 7:171–184

    PubMed  CAS  Google Scholar 

  • Slifka MK, Rodriguez F, Whitton JL (1999) Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401:76–79

    PubMed  CAS  Google Scholar 

  • Slifka MK, Whitton JL (2000a) Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J Immunol 164:208–216

    PubMed  CAS  Google Scholar 

  • Slifka MK, Whitton JL (2000b). Clinical implications of dysregulated cytokine production. J Mol Med 78:74–80

    PubMed  CAS  Google Scholar 

  • Stephensen CB, Blount SR, Lanford RE, Holmes KV, Montali RJ, Fleenor ME, Shaw JF (1992) Prevalence of serum antibodies against lymphocytic choriomeningitis virus in selected populations from two US cities. J Med Virol 38:27–31

    CAS  Google Scholar 

  • Tobery T, Siliciano RF (1999) Induction of enhanced CTL-dependent protective immunity in vivo by N-end rule targeting of a model tumor antigen. J Immunol 162

    Google Scholar 

  • Tobery TW, Siliciano RF (1997) Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med 185:909–920

    PubMed  CAS  Google Scholar 

  • Vanzee BE, Douglas RG, Betts RF, Bauman AW, Fraser DW, Hinman AR (1975) Lymphocytic choriomeningitis in university hospital personnel. Clinical features. Am J Med 58:803–809

    PubMed  CAS  Google Scholar 

  • Walker DH, Wulff H, Lange JV, Murphy FA (1975) Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull World Health Organ 52:523–534

    PubMed  CAS  Google Scholar 

  • Walsh CM, Matloubian M, Liu CC, Ueda R, Kurahara CG, Christensen JL, Huang MT, Young JD, Ahmed R, Clark WR (1994) Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 91: 10854–10858

    PubMed  CAS  Google Scholar 

  • Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Duno G, Utrera A, Mills JN, Ksiazek TG, Tovar D, Tesh RB (2000) Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virol 266:189–195

    CAS  Google Scholar 

  • Whitton JL (1990) Lymphocytic choriomeningitis virus CTL. Sem Virol 1:257–262

    Google Scholar 

  • Whitton JL, Rodriguez F, Zhang J, Hassett DE (1999) DNA immunization: mechanistic studies. Vaccine 17:1612–1619

    PubMed  CAS  Google Scholar 

  • Whitton JL, Sheng N, Oldstone MBA, McKee TA (1993) A “string-of-beads” vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge. J Virol 67:348–352

    PubMed  CAS  Google Scholar 

  • Wilson SM, Clegg JC (1991) Sequence analysis of the S RNA of the African arenavirus Mopeia: an unusual secondary structure feature in the intergenic region. Virol 180:543–552

    CAS  Google Scholar 

  • Xiang R, Lode HN, Chao TH, Ruehlmann JM, Dolman CS, Rodriguez F, Whitton JL, Overwijk WW, Restifo NP, Reisfeld RA (2000) An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA 97:5492–5497

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Zhang J, Whitton JL (1995) DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection. J Virol 69:2684–2688

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whitton, J.L. (2002). Designing Arenaviral Vaccines. In: Oldstone, M.B.A. (eds) Arenaviruses II. Current Topics in Microbiology and Immunology, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56055-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56055-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62724-8

  • Online ISBN: 978-3-642-56055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics