Skip to main content

A Unified Model for Cardinally and Ordinally Constructing Quadratic Objective Functions

  • Conference paper

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 510))

Abstract

A model for constructing quadratic objective functions (= utility functions) from interviewing a decision maker is considered. The interview is designed to guarantee a unique non-trivial output of the model and to enable estimating both cardinal and ordinal utility, depending on the interview scenarios selected.

The model is provided with operational restrictions for the monotonicity of the objective function (= either only growth, or only decrease in every variable) and its quasi-concavity (= convexity of the associated preference). Thereby constructing a monotonic quasi-concave quadratic objective function is reduced to a problem of non-linear programming. To support interactive editing of a quadratic objective function, the stability of the model (the continuous dependence of the output ordinal preference on the input data) is proved.

For illustration, we construct a quadratic objective function of ski station customers. Then it is used to adjust prices of 10 ski stations in the south of Stuttgart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V.I. (ED.) (1994): Bifurcation theory and catastrophe theory, Springer, Berlin.

    Google Scholar 

  • Arrow, K.J. and A.C. Enthoven (1961): “Quasi-Concave Programming,” Econometrica, 29, 779–800.

    Article  Google Scholar 

  • Chew, S.H., L.G. Epstein, and U. Segal (1991): “Mixture Symmetry and Quadratic Utility,” Econometrica, 59, 139–163.

    Article  Google Scholar 

  • Dantzig, G., P.H. Mcallister, and J.C. Stone (1989A): “Deriving a utility function for the U.S. Economy. Parts 1-3,” Journal of Policy Modeling, 11(3), 391–424.

    Article  Google Scholar 

  • P.H. Mcallister, and J.C. Stone (1989b): “Deriving a utility function for the U.S. Economy. Parts 4-5,” Journal of Policy Modeling, 11(4), 569–592.

    Article  Google Scholar 

  • Debreu, G. (1952): “Definite and Semidefinite Quadratic Forms,” Econometrica, 20, 295–300.

    Article  Google Scholar 

  • Diewert, W.E., M. Avriel and I. Zang (1981): “Nine Kinds of Quasiconcavity and Concavity”, Journal of Economic Theory, 25, 397–420.

    Article  Google Scholar 

  • DEUTSCHE BUNDESBANK (1995): Monatsbericht, 47(8).

    Google Scholar 

  • Epstein, L.G., and U. Segal (1992): “Quadratic Social Welfare Functions,” Journal of Political Economy, 100, 691–712.

    Article  Google Scholar 

  • FENCHEL, W. (1953): Convex cones, sets, and functions. Princeton University, Department of Mathematics, Logistics Research Project, mimeographed.

    Google Scholar 

  • FENCHEL, W. (1956): “Über konvexe Funktionen mit vorgeschriebenen Niveaumannigfaltigkeiten”, Mathematische Zeitschrift, 63, 496–506.

    Google Scholar 

  • Fletcher, R. (1987): Practical methods of optimization. 2nd Ed. Chichester-New York: Wiley.

    Google Scholar 

  • Frisch, R. (1957): Numerical determination of a quadratic preference function for use in macroeconomic programming. Oslo: Sosialokonoisk Institutt-Universitetet I Oslo.

    Google Scholar 

  • Frisch, R. (1959): “A complete scheme for computing all direct and cross demand elasticities in a model with many sectors,” Econometrica, 27, 177–196.

    Article  Google Scholar 

  • Frisch, R. (1964): “An Implementation system for optimal national economic planning without detailed quantity fixation from a central authority,” Proceedings of the 3rd International Conference on Operations Research, Oslo, 1963. Dunod-English University Press, Paris-London.

    Google Scholar 

  • Gill, PH.E., W. Murray, and M.H. Wright (1981): Practical optimization. San Diego: Academic Press.

    Google Scholar 

  • Gruber, J. (1979): Approaches to Determining the Weights in the Objective Function of Econometric Decision Models. FernUniversitaet: Discussion paper No. 35.

    Google Scholar 

  • Gruber, J. (1991) (Ed.): Econometric Decision Models. New Methods of Modeling and Applications. Springer, Berlin (Lecture Notes in Economics and Mathematical Systems 366).

    Google Scholar 

  • Hadley, G. (1961): Linear Algebra, Reading, MA: Addison-Wesley.

    Google Scholar 

  • Herstein I.N., and D.J. Winter (1988): Matrix Theory and Linear Algebra. New York: Macmillan.

    Google Scholar 

  • Hüsges, H., and J. Gruber (1991): “Least Squares Estimation of Quadratic Preference Functions for Econometric Decision Models Based on Survey Data,” in: J. Gruber (Ed.) Econometric Decision Models. New Methods of Modeling and Applications, Lecture Notes in Economics and Mathematical Systems 366. Berlin: Springer, 185–204.

    Google Scholar 

  • Johansen, L. (1974): “Establishing preference functions for macroeconomic decision models,” European Economic Review, 5, 41–66.

    Article  Google Scholar 

  • Kelley, J.L. (1955): General topology. New York: Van Nostrand.

    Google Scholar 

  • Korn, G.A., and TH.M. KORN (1968): Mathematical Handbook for Scientists and Engineers, New York: Mcgaraw-Hill.

    Google Scholar 

  • Leroux, A. (1984): “Other Determinental Conditions for Concavity and Quasi-Concavity,” Journal of Mathematical Economics, 13, 43–49.

    Article  Google Scholar 

  • Malinvaud, E. (1969): “First Order Certainty Equivalence,” Econometrica, 37, 706–718.

    Article  Google Scholar 

  • Merkies, A.H.Q.M., and M.W. Hofkes (1991): “Operationalizing a Macro-Economic Preference Function,” in: J. Gruber (Ed.) Econometric Decision Models. New Methods of Modeling and Applications, Lecture Notes in Economics and Mathematical Systems 366. Berlin: Springer, 205–221.

    Google Scholar 

  • Merkies, A.H.Q.M., and T.E. Nijman (1981): “Preference Functions of Dutch Political Parties,” Economie appliquée, 4, 785–818.

    Google Scholar 

  • T.E. Nijman (1983): “The Measurement of Quadratic Preference Functions with Small Samples,” in: J. Gruber (Ed.). Econometric Decision Models, Lecture Notes in Economics and Mathematical Systems 208. Berlin: Springer, 242–262.

    Chapter  Google Scholar 

  • Michael, E. (1951): “Topologies on spaces of subsets,” Trans. Amer. Math. Soc, 71, 152–182.

    Article  Google Scholar 

  • Polak, E., (1997): Optimization: Algorithms and Consistent Approximations. New York: Springer.

    Google Scholar 

  • Sax, M. (1996): Quadratische Zielfunktion optimales Skigebietes für eine Tagesausfahrt. FernUniversität Hagen: Seminarpapier vom 22.11.1996.

    Google Scholar 

  • Sen, A.K. (1982): Choice, welfare, and measurement. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • Sen, A.K. (1986): “Social choice theory”, in: ARROW K., and M. INTRILIGATOR (EDS.) Handbook of Mathematical Economics, vol. 3, Amsterdam: North-Holland.

    Google Scholar 

  • Shor, N.Z. (1998): Nondifferential Optimization and Polynomial Problems, Dordrecht: Kluwer.

    Google Scholar 

  • Tangian A.S. (1992): On Constructing Quadratic Objective Functions. Hagen: FernUniversitaet. Discussion Paper No. 192.

    Google Scholar 

  • Tangian A.S. (1993): Constructing Quadratic and Separable Objective Functions. Hagen: FernUniversitaet. Discussion Paper No. 205.

    Google Scholar 

  • Tangian A.S. (1996): A WINDOWS Program for Constructing Objective Functions. Version 1.0. User’s Guide. FernUniversität, Hagen (Discussion Paper 233).

    Google Scholar 

  • J. Gruber (1997): “Constructing Quadratic and Polynomial Objective Functions”, in: TANGIAN A.S., and J. GRUBER (EDS.) Constructing Scalar-Valued Objective Functions, Berlin: Springer (Lecture Notes in Economics and Mathematical Systems 453), 166–194.

    Google Scholar 

  • Theil, H. (1957): “A Note on Certainty Equivalence in Dynamic Planning,” Econometrica, 25, 346–349.

    Article  Google Scholar 

  • Theil, H. (1964): Optimal Decision Rules for Government and Industry. Amsterdam: North-Holland.

    Google Scholar 

  • Tinbergen, J. (1952): On the theory of economic policy. Amsterdam: North-Holland.

    Google Scholar 

  • Tinbergen, J. (1956): Economic policy: Principles and design. Amsterdam: North-Holland.

    Google Scholar 

  • Weymark, J. (1991): “A reconsideration of the Harsanyi-Sen debate on utilitarianism”, in: ELSTER, J., and J. ROEMER (EDS.) Interpersonal Comparisons of Well-being, Cambridge: Cambridge University Press.

    Google Scholar 

  • Yefimov, N.V. (1964): Quadratic Forms and Matrices. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tangian, A. (2002). A Unified Model for Cardinally and Ordinally Constructing Quadratic Objective Functions. In: Tangian, A.S., Gruber, J. (eds) Constructing and Applying Objective Functions. Lecture Notes in Economics and Mathematical Systems, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56038-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56038-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42669-1

  • Online ISBN: 978-3-642-56038-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics