Skip to main content

Arenaviruses: Protein Structure and Function

  • Chapter
Book cover Arenaviruses I

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 262))

Abstract

The Arenaviruses are structurally quite simple, consisting of only four primary gene products encoded on two RNA strands. Despite this very simple genetic plan, these viruses are capable of interacting with the host in a bewildering variety of permutations that result in a range of infections from a lifelong persistent carrier state, as is evident in the neonatally or congenitally infected carrier mouse, to the lethal acute diseases typical of Lassa, Machupo, Junin, and other arenavirus hemorrhagic fevers. These differing disease courses are, in part, determined by the clash of two factors: the cellular and tissue site(s) of virus replication in vivo, defined as tropism, and the genetically determined host response to the infecting virus. When the virus replicates in critical tissues like the meninges and choroid plexi of the mouse brain, as is the case in acute LCMV infection, and the host is capable of mounting a strong T-cell response, the end result is a fatal choriomeningitis (Fig. 1). However, replication of the virus in these same tissues results in little tissue injury or disease in a mouse that has been immunosuppressed, or in a neonate prior to maturation of the T-cell response. This immunopathological paradox is at the core of understanding the pathogenesis of LCM disease and has provided a singularly important biological model for probing cellular immunology for more than six decades (Buchmeier and Zajac 1999). In this brief chapter, the nature of the arenavirus proteins and their functions will be discussed with particular emphasis on their role in infection and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auperin DD, Romanowski V, et al. (1984) Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52(3):897–904

    PubMed  CAS  Google Scholar 

  • Blount P, Elder J, et al. (1986) Dissecting the molecular anatomy of the nervous system: analysis of RNA and protein expression in whole body sections of laboratory animals. Brain Res 382(2):257–265

    Article  PubMed  CAS  Google Scholar 

  • Borden KL, Campbell Dwyer EJ, et al. (1997) The promyelocytic leukemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Lett 418(1-2):30–34

    Article  PubMed  CAS  Google Scholar 

  • Borden KL, Campbell Dwyer EJ, et al. (1998a) An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol 72(1):758–766

    CAS  Google Scholar 

  • Borden KL, Campbell Dwyer EJ, et al. (1998b) Two RING finger proteins, the oncoprotein PML and the arenavirus Z protein, colocalize with the nuclear fraction of the ribosomal P proteins. J Virol 72(5):3819–3826

    CAS  Google Scholar 

  • Borrow P, Oldstone MB (1992) Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus. J Virol 66(12):7270–7281

    PubMed  CAS  Google Scholar 

  • Borrow P, Oldstone MB (1994) Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology 198(1): 1–9

    Google Scholar 

  • Bro-Jorgensen K (1971) Characterization of virus-specific antigen in cell culture infected with lymphocytic choriomeningitis virus. Acta Pathol Microbiol Scand [B] Microbiol Immunol 79(4):466–474

    CAS  Google Scholar 

  • Brown WJ, Kirk BE (1969) Complement-fixing antigen from BHK-21 cell cultures infected with lymphocytic choriomeningitis virus. Appl Microbiol 18(3):496–499

    PubMed  CAS  Google Scholar 

  • Bruns M, Kratzberg T, et al. (1990) Mode of replication of lymphocytic choriomeningitis virus in persistently infected cultivated mouse L cells. Virology 177(2):615–624

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Bowen MD, et al. (2001) Chapter 50: Arenaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology. Lippincott Williams and Wilkins, Philadelphia 2: 1635–1668

    Google Scholar 

  • Buchmeier MJ, Gee SR, et al. (1977) Antigens of Pichinde virus I. Relationship of soluble antigens derived from infected BHK-21 cells to the structural components of the virion. J Virol 22(1): 175–186

    PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Oldstone MBA (1977) Identity of the viral protein responsible for serologic cross reactivity among the Tacaribe complex arenaviruses. Proc of Conf on Negative Strand Virus and the Host Cell. B. W. J. a. B. Mahy, R.D. London, Academic, pp 91–96

    Google Scholar 

  • Buchmeier MJ, Zajac AJ (1999) Lymphocytic Choriomeningitis Virus. John Wiley & Sons Ltd, Chichester, Sussex, UK

    Google Scholar 

  • Burns JW, Buchmeier MJ (1991) Protein-protein interactions in lymphocytic choriomeningitis virus. Virology 183(2):620–629

    Article  PubMed  CAS  Google Scholar 

  • Burns JW, Buchmeier MJ (1993) Glycoproteins of the arenaviruses. In: Salvato MS (ed) The Arenaviridae. Plenum Press, New York, pp 17–35

    Chapter  Google Scholar 

  • Campbell Dwyer EJ, Lai H, et al. (2000) The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4 E and selectively represses translation in a RING dependent manner. J Virol 74(7):3293–3300

    Article  CAS  Google Scholar 

  • Cao W, Henry MD, et al. (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282(5396):2079–2081

    Article  PubMed  CAS  Google Scholar 

  • Chastel C (1970) Immunodiffusion studies on a fluorocarbon-extracted antigen of lymphocytic choriomeningitis virus. Acta Virol (Praha) 14:507–509

    CAS  Google Scholar 

  • Clegg JCS (1993) Molecular phylogeny of the arenaviruses and guide to published sequence data. In: Salvato MS (ed) The Arenaviridae. Plenum Press, New Yorkü, pp 175–185

    Chapter  Google Scholar 

  • Di Simone C, Buchmeier MJ (1995) Kinetics and pH dependence of acid-induced structural changes in the lymphocytic choriomeningitis virus glycoprotein complex. Virology 209(1):3–9

    Article  PubMed  Google Scholar 

  • Di Simone C, Zandonatti MA, et al. (1994) Acidic pH triggers LCMV membrane fusion activity and conformational change in the glycoprotein spike. Virology 198(2):455–165

    Article  PubMed  Google Scholar 

  • Djavani M, Rodas J, et al. (2001) Role of the promyelocytic leukemia protein PML in the interferon sensitivity of lymphocytic choriomeningitis virus. J Virol 75(13):6204–6208

    Article  PubMed  CAS  Google Scholar 

  • Garcin D, Rochat S, et al. (1993) The Tacaribe arenavirus small zinc finger protein is required for both mRNA synthesis and genome replication. J Virol 67(2):807–812

    PubMed  CAS  Google Scholar 

  • Geschwender HH, Rutter G, et al. (1976) Lymphocytic choriomeningitis virus. II. Characterization of extractable complement-fixing activity. Med Microbiol Immunol (Berl) 162(2): 119–131

    Article  CAS  Google Scholar 

  • Gimenez HB, Compans RW (1980) Defective interfering Tacaribe virus and persistently infected cells. Virology 107(1):229–239

    Article  PubMed  CAS  Google Scholar 

  • Howard CR, Buchmeier MJ (1983) A protein kinase activity in lymphocytic choriomeningitis virus and identification of the phosphorylated product using monoclonal antibody. Virology 126(2):538–547

    Article  PubMed  CAS  Google Scholar 

  • Klenerman P, Hengartner H, et al. (1997) A non-retroviral RNA virus persists in DNA form [see comments]. Nature 390(6657):298–301

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Novella IS, et al. (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74(8):3470–3477

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Grube F, Slenczka W, et al. (1969) A persistent and inapparent infection of L cells with the virus of lymphocytic choriomeningitis. J Gen Virol 5(1):63–81

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Grube F, Martinez Peralta LM, et al. (1983) Persistent infection of mice with the lymphocytic choriomeningitis virus. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive Virology. Plenum Press, New York, pp 43–103

    Google Scholar 

  • Lenz O, ter Meulen J, et al. (2000) Identification of a novel consensus sequence at the cleavage site of the Lassa Virus glycoprotein. J Virol 74:11418–11421

    Article  PubMed  CAS  Google Scholar 

  • Lukashevich IS, Djavani M, et al. (1997) The Lassa fever virus L gene: nucleotide sequence, comparison, and precipitation of a predicted 250-kDa protein with monospecific antiserum. J Gen Virol 78(Pt 3): 547–551

    PubMed  CAS  Google Scholar 

  • Martinez Peralta L, Bruns M, et al. (1981) Biochemical composition of lymphocytic choriomeningitis virus interfering particles. J Gen Virol 55:475–479

    Article  PubMed  CAS  Google Scholar 

  • Matsuura Y, Possee RD, et al. (1986) Expression of the S-coded genes of lymphocytic choriomeningitis arenavirus using a baculovirus vector. J Gen Virol 67(8): 1515–1529

    Article  PubMed  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1994) Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol 68(11):7659-7664

    Google Scholar 

  • Oldstone MB, Buchmeier MJ (1982) Restricted expression of viral glycoprotein in cells of persistently infected mice. Nature 300(5890):360–362

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB, Dixon FJ (1969) Pathogenesis of chronic disease associated with persistent lymphocytic choriomeningitis viral infection. I. Relationship of antibody production to disease in neonatally infected mice. J Exp Med 129(3):483–505

    Article  PubMed  CAS  Google Scholar 

  • Pedersen IR (1979) Structural components and replication of arenaviruses. Adv Virus Res 24:277–330

    Article  PubMed  CAS  Google Scholar 

  • Rawls WE, Buchmeier M (1975) Arenaviruses: purification and physicochemical nature. Bull World Health Organ 52(4-6):393–101

    PubMed  CAS  Google Scholar 

  • Rawls WE, Leung WC (1979) Arenaviruses. Compr Virol 14:157–192

    CAS  Google Scholar 

  • Rodriguez M, Buchmeier MJ, et al. (1983) Ultrastructural localization of viral antigens in the CNS of mice persistently infected with lymphocytic choriomeningitis virus (LCMV) Am J Pathol 110(1): 95–100

    PubMed  CAS  Google Scholar 

  • Romanowski V, Bishop DH (1983) The formation of arenaviruses that are genetically diploid. Virology 126(1):87-95

    Google Scholar 

  • Salvato M, Shimomaye E, et al. (1989) The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase. Virology 169(2): 377–384

    Article  PubMed  CAS  Google Scholar 

  • Salvato MS, Schweighofer KJ, et al. (1992) Biochemical and immunological evidence that the 11kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res 22(3): 185–198

    Article  PubMed  CAS  Google Scholar 

  • Simon M(1970) Multiplication of lymphocytic choriomeningitis virus in various systems. Acta Virol 14(5):369–376

    PubMed  CAS  Google Scholar 

  • Smadel JE, Green RM, et al. (1942) Lymphocytic choriomeningitis: two human fatalities following an unusual febrile illness. Proc Soc Exp Biol Med 49:683

    Google Scholar 

  • Soneoka Y, Cannon PM, et al. (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23(4):628–633

    Article  PubMed  CAS  Google Scholar 

  • Traub E (1936a) The epidemiology of lymphocytic choriomeningitis in white mice. J Exp Med 64:183–200

    Article  CAS  Google Scholar 

  • Traub E (1936b) Persistence of lymphocytic choriomeningitis virus in immune animals and its relation to immunity. J Exp Med 63:847–852

    Article  CAS  Google Scholar 

  • van der Zeijst BA, Bleumink N, et al. (1983a) Viral proteins and RNAs in BHK cells persistently infected by lymphocytic choriomeningitis virus. J Virol 48(1):262–270

    Google Scholar 

  • van der Zeijst BAM, Noyes BE, et al. (1983b) Persistent infection of some standard cell lines by lymphocytic choriomeningitis virus: transmission of infection by an intracellar agent. J Virol 48: 249–264

    Google Scholar 

  • Weber EL, Buchmeier MJ (1988) Fine mapping of an antigenic site conserved among arenaviruses. Virology 164:30–38

    Article  PubMed  CAS  Google Scholar 

  • Welsh RM (1978) Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction. J Exp Med 148:163–181

    Article  PubMed  Google Scholar 

  • Welsh RM Jr., Buchmeier MJ (1979) Protein analysis of defective interfering lymphocytic choriomeningitis virus and persistently infected cells. Virology 96(2):503–515

    Article  PubMed  CAS  Google Scholar 

  • Welsh RM, Lampert PW, et al. (1977) Prevention of virus-induced cerebellar diseases by defectiveinterfering lymphocytic choriomeningitis virus. J Infect Dis 136(3):391–399

    Article  PubMed  CAS  Google Scholar 

  • Wilsnack RE, Rowe WP (1964) Immunofluorescent studies of the histopathogenesis of lymphocytic choriomeningitis virus infection. J Exp Med 120:829–841

    Article  PubMed  CAS  Google Scholar 

  • Wright KE, Salvato MS, et al. (1989) Neutralizing epitopes of lymphocytic choriomeningitis virus are conformational and require both glycosylation and disulfide bonds for expression. Virology 171(2):417–126

    Article  PubMed  CAS  Google Scholar 

  • Wright KE, Spiro RC, et al. (1990) Post-translational processing of the glycoproteins of lymphocytic choriomeningitis virus. Virology 177(1): 175–183

    Article  PubMed  CAS  Google Scholar 

  • Young PR, Chanas AC, et al. (1987) Localization of an arenavirus protein in the nuclei of infected cells. J Gen Virol 68(Pt 9):2465–2470

    Article  PubMed  CAS  Google Scholar 

  • Young PR, Howard CR (1983) Fine structure analysis of Pichinde virus nucleocapsids. J Gen Virol 64(Pt 4):833–842

    Article  Google Scholar 

  • Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248(450):701–702

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buchmeier, M.J. (2002). Arenaviruses: Protein Structure and Function. In: Oldstone, M.B.A. (eds) Arenaviruses I. Current Topics in Microbiology and Immunology, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56029-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56029-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42244-0

  • Online ISBN: 978-3-642-56029-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics