Skip to main content

Phase Plane Behavior of Solitary Waves in Nonlinear Layered Media

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Abstract

The one-dimensional elastic wave equations for compressional waves have the form

$$ \begin{array}{*{20}{c}} \hfill {{{ \in }_{t}}(x,t) - {{u}_{x}}(x,t) = 0} \\ \hfill {{{{(\rho (x)u(x,t))}}_{t}} - \sigma {{{( \in (x,t),x)}}_{x}} = 0} \\ \end{array} $$
((1))

where ε(x, t) is the strain and u(x, t) the velocity. We consider a heterogeneous material with the density specified by ρ(x) and a nonlinear constitutive relation for the stress given by a function σ(∈, x) that also varies explicitly with x. This is a hyperbolic system of conservation laws with a spatially-varying flux function, q t + f(q, x) x = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bale, D., LeVeque, R.J., Mitran, S., Rossmanith, J. R. (2002): A wavepropagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput., to appear. (ftp://amath. washington.edu/pub/rjl/papers/fwave. ps.gz).

    Google Scholar 

  2. Fogarty, T., LeVeque, R.J. (1999): High-resolution finite volume methods for acoustics in periodic or random medi a. J. Acoust. Soc. Am. 106, 17–28.

    Article  Google Scholar 

  3. LeVeque, R.J. (2002): Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

    Google Scholar 

  4. LeVeque, R.J. (2001): Finite volume methods for nonlinear elast icity in heterogeneous media. Int. J. Numer. Meth. Fluids, to appear. (ftp://amath. washington. edu/pub/rjl/papers/rjl:oxOl. ps.gz).

    Google Scholar 

  5. LeVeque, R.J., Yong, D.H. (2002): Solitary waves in layered nonlinear media. Submitted, 2002. (ftp://amath.washington. edu/pub/rjl/papers/stegoton.ps.gz).

    Google Scholar 

  6. Santosa, F., Symes, W. (1991): A disp ersive effective medium for wave propagation in periodic composites. SIAM J. AppJ. Math. 51, 984–1005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

LeVeque, R.J., Yong, D.H. (2003). Phase Plane Behavior of Solitary Waves in Nonlinear Layered Media. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics