Skip to main content

Constructing Complex Systems Via Activity-Driven Unsupervised Hebbian Self-Organization

  • Chapter
  • First Online:
Book cover Growing Adaptive Machines

Part of the book series: Studies in Computational Intelligence ((SCI,volume 557))

Abstract

How can an information processing system as complex and as powerful as the human cerebral cortex be constructed from the limited information available in the genome? Answering this scientific question has the potential to revolutionize how computing systems for manipulating real-world data are designed and built. Based on an extensive array of physiological, anatomical, and imaging data from the primary visual cortex (V1) of mammals, we propose a relatively simple biologically based developmental architecture that accounts for most of the demonstrated functional properties of V1 neurons. Given the overall similarity between cortical regions, and the absence of V1-specific circuitry in the model architecture, we expect similar principles to apply throughout the cerebral cortex. The architecture consists of a network of simple artificial V1 neurons with initially unspecific connections that are modified by Hebbian learning and homeostatic plasticity, driven by input patterns from other neural regions and ultimately from the external world. Through an unsupervised developmental process, the model neurons begin to display the major known functional properties of V1 neurons, including receptive fields and topographic maps selective for all of the major low-level visual feature dimensions, realistic specific lateral connectivity underlying surround modulation and adaptation such as visual aftereffects, realistic behavior with visual contrast, and realistic temporal responses. In each case these relatively complex properties emerge from interactions between simple neurons and between internal and external drivers for neural activity, without any requirement for supervised learning, top-down feedback or reinforcement, neuromodulation, or spike-timing dependent plasticity. The model also unifies explanations of a wide variety of phenomena previously considered distinct, with the same adaptation mechanisms leading to both long-term development and short-term plasticity (aftereffects), the same subcortical lateral interactions providing both gain control and accounting for the time course of neural responses, and the same cortical lateral interactions leading to complex cell properties, map formation, and surround modulation. This relatively simple architecture thus sets a baseline for explanations of neural function, suggesting that most of the development and function of V1 can be understood as unsupervised learning, and setting the stage for demonstrating the additional effects of higher- or lower-level mechanisms. The architecture also represents a simple, scalable approach for specifying complex data-processing systems in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.G. Albrecht, W.S. Geisler, R.A. Frazor, A.M. Crane, Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J. Neurophysiol. 88(2), 888–913 (2002)

    Google Scholar 

  2. H.J. Alitto, W.M. Usrey, Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57(1), 135–146 (2008)

    Article  Google Scholar 

  3. J. Antolik, Unified developmental model of maps, complex cells and surround modulation in the primary visual cortex. Ph.D. thesis, School of Informatics, The University of Edinburgh, Edinburgh, UK, 2010

    Google Scholar 

  4. J. Antolik, J.A. Bednar, Development of maps of simple and complex cells in the primary visual cortex. Frontiers Comput. Neurosci. 5, 17 (2011)

    Article  Google Scholar 

  5. C.E. Ball, J.A. Bednar, A self-organizing model of color, ocular dominance, and orientation selectivity in the primary visual cortex. in Society for Neuroscience Abstracts. Society for Neuroscience, www.sfn.org, Program No. 756.9 (2009)

    Google Scholar 

  6. H.B. Barlow, P. Földiák, Adaptation and decorrelation in the cortex, in The Computing Neuron, ed. by R. Durbin, C. Miall, G. Mitchison (Addison-Wesley, Reading, 1989), pp. 54–72

    Google Scholar 

  7. J.A. Bednar, Building a mechanistic model of the development and function of the primary visual cortex. J. Physiol. (Paris, 2012 in press)

    Google Scholar 

  8. J.A. Bednar, A. Kelkar, R. Miikkulainen, Scaling self-organizing maps to model large cortical networks. Neuroinformatics 2, 275–302 (2004)

    Article  Google Scholar 

  9. J.A. Bednar, R. Miikkulainen, Tilt aftereffects in a self-organizing model of the primary visual cortex. Neural Comput. 12(7), 1721–1740 (2000)

    Article  Google Scholar 

  10. J.A. Bednar, R. Miikkulainen, Self-organization of spatiotemporal receptive fields and laterally connected direction and orientation maps. Neurocomputing 52–54, 473–480 (2003)

    Article  Google Scholar 

  11. J.A. Bednar, R. Miikkulainen, Prenatal and postnatal development of laterally connected orientation maps. in Computational Neuroscience: Trends in Research, (2004), p. 985–992

    Google Scholar 

  12. J.A. Bednar, R. Miikkulainen, Prenatal and postnatal development of laterally connected orientation maps. Neurocomputing 58–60, 985–992 (2004)

    Article  Google Scholar 

  13. J.A. Bednar, R. Miikkulainen, Joint maps for orientation, eye, and direction preference in a self-organizing model of V1. Neurocomputing 69(10–12), 1272–1276 (2006)

    Google Scholar 

  14. A.J. Bell, T.J. Sejnowski, The independent components of natural scenes are edge filters. Vision. Res. 37, 3327 (1997)

    Article  Google Scholar 

  15. E.L. Bienenstock, L.N. Cooper, P.W. Munro, Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982)

    Google Scholar 

  16. G.G. Blasdel, Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12, 3139–3161 (1992)

    Google Scholar 

  17. V. Bonin, V. Mante, M. Carandini, The suppressive field of neurons in lateral geniculate nucleus. J. Neurosci. 25, 10844–10856 (2005)

    Article  Google Scholar 

  18. W.H. Bosking, Y. Zhang, B.R. Schofield, D. Fitzpatrick, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    Google Scholar 

  19. J. Ciroux, Simulating the McCollough effect in a self-organizing model of the primary visual cortex. Master’s thesis, The University of Edinburgh, Scotland, UK, 2005

    Google Scholar 

  20. D.M. Coppola, L.E. White, D. Fitzpatrick, D. Purves, Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc. Nat. Acad. Sci. U.S.A. 95(5), 2621–2623 (1998)

    Article  Google Scholar 

  21. D.W. Dong, Associative decorrelation dynamics: A theory of self-organization and optimization in feedback networks, in Advances in Neural Information Processing Systems 7, ed. by G. Tesauro, D.S. Touretzky, T.K. Leen (MIT Press, Cambridge, 1995), pp. 925–932

    Google Scholar 

  22. B.J. Farley, H. Yu, D.Z. Jin, M. Sur, Alteration of visual input results in a coordinated reorganization of multiple visual cortex maps. J. Neurosci. 27(38), 10299–10310 (2007)

    Article  Google Scholar 

  23. F. Felisberti, A.M. Derrington, Long-range interactions modulate the contrast gain in the lateral geniculate nucleus of cats. Vis. Neurosci. 16, 943–956 (1999)

    Article  Google Scholar 

  24. K. Funke, F. Wörgötter, On the significance of temporally structured activity in the dorsal lateral geniculate nucleus (LGN). Prog. Neurobiol. 53(1), 67–119 (1997)

    Article  Google Scholar 

  25. A. Grabska-Barwinska, C. von der Malsburg, Establishment of a scaffold for orientation maps in primary visual cortex of higher mammals. J. Neurosci. 28(1), 249–257 (2008)

    Article  Google Scholar 

  26. A. Hyvärinen, P.O. Hoyer, A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision. Res. 41(18), 2413–2423 (2001)

    Article  Google Scholar 

  27. T. Imai, H. Sakano, L.B. Vosshall, Topographic mapping-the olfactory system. Cold Spring Harb. Perspect. Biol. Med. 2(8), (2010)

    Google Scholar 

  28. A.A. Koulakov, D.B. Chklovskii, Orientation preference patterns in mammalian visual cortex: a wire length minimization approach. Neuron 29, 519–527 (2001)

    Article  Google Scholar 

  29. J.S. Law, J. Antolik, and J.A. Bednar. Mechanisms for stable and robust development of orientation maps and receptive fields. Technical report, School of Informatics, The University of Edinburgh, 2011. EDI-INF-RR-1404

    Google Scholar 

  30. C. McCollough, Color adaptation of edge-detectors in the human visual system. Science 149(3688), 1115–1116 (1965)

    Article  Google Scholar 

  31. R. Miikkulainen, J.A. Bednar, Y. Choe, J. Sirosh, Computational Maps in the Visual Cortex (Springer, Berlin, 2005)

    Google Scholar 

  32. K.D. Miller, A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994)

    Google Scholar 

  33. K.D. Miller, D.J.C. MacKay, The role of constraints in Hebbian learning. Neural Comput. 6, 100–126 (1994)

    Google Scholar 

  34. D.E. Mitchell, D.W. Muir, Does the tilt after effect occur in the oblique meridian? Vision. Res. 16, 609–613 (1976)

    Article  Google Scholar 

  35. K. Obermayer, H. Ritter, K.J. Schulten, A principle for the formation of the spatial structure of cortical feature maps. Proc. Nat. Acad. Sci. U.S.A. 87, 8345–8349 (1990)

    Article  Google Scholar 

  36. B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  37. S.-B. Paik, D.L. Ringach, Retinal origin of orientation maps in visual cortex. Nat. Neurosci. 14(7), 919–925 (2011)

    Article  Google Scholar 

  38. C.M. Palmer, Topographic and laminar models for the development and organisation of spatial frequency and orientation in V1. Ph.D. thesis, School of Informatics, The University of Edinburgh, Edinburgh, UK, 2009

    Google Scholar 

  39. Z.W. Pylyshyn, Situating vision in the world. Trends Cogn. Sci. 4(5), 197–207 (2000)

    Article  Google Scholar 

  40. T. Ramtohul, A self-organizing model of disparity maps in the primary visual cortex. Master’s thesis, The University of Edinburgh, Scotland, UK, 2006

    Google Scholar 

  41. M. Rehn, F.T. Sommer, A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. J. Comput. Neurosci. 22(2), 135–146 (2007)

    Article  MathSciNet  Google Scholar 

  42. D.L. Ringach, On the origin of the functional architecture of the cortex. PLoS One 2(2), e251 (2007)

    Article  Google Scholar 

  43. B. Roerig, J.P. Kao, Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. J. Neurosci. 19(24), RC44 (1999)

    Google Scholar 

  44. A.B. Saul, A.L. Humphrey, Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. J. Neurophysiol. 68(4), 1190–1208 (1992)

    Google Scholar 

  45. M.P. Sceniak, D.L. Ringach, M.J. Hawken, R. Shapley, Contrast’s effect on spatial summation by macaque V1 neurons. Nat. Neurosci. 2, 733–739 (1999)

    Article  Google Scholar 

  46. G. Sclar, R.D. Freeman, Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Exp. Brain Res. 46, 457–461 (1982)

    Article  Google Scholar 

  47. F. Sengpiel, A. Sen, C. Blakemore, Characteristics of surround inhibition in cat area 17. Exp. Brain Res. 116(2), 216–228 (1997)

    Article  Google Scholar 

  48. H.T. Siegelmann, E.D. Sontag, Turing computability with neural nets. Appl. Math. Lett. 4, 77–80 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  49. A.M. Sillito, J. Cudeiro, H.E. Jones, Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci. 29(6), 307–316 (2006)

    Article  Google Scholar 

  50. L.C. Sincich, G.G. Blasdel, Oriented axon projections in primary visual cortex of the monkey. J. Neurosci. 21, 4416–4426 (2001)

    Google Scholar 

  51. J.-L. Stevens, A temporal model of neural activity and VSD response in the primary visual cortex. Master’s thesis, The University of Edinburgh, Scotland, UK, 2011

    Google Scholar 

  52. A. Thiele, A. Pooresmaeili, L.S. Delicato, J.L. Herrero, P.R. Roelfsema, Additive effects of attention and stimulus contrast in primary visual cortex. Cereb. Cortex 19(12), 2970–2981 (2009)

    Article  Google Scholar 

  53. P. Thompson, D. Burr, Visual aftereffects. Curr. Biol. 19(1), R11–14 (2009)

    Article  Google Scholar 

  54. G.G. Turrigiano, Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22(5), 221–227 (1999)

    Article  Google Scholar 

  55. C. Wang, C. Bardy, J.Y. Huang, T. FitzGibbon, B. Dreher, Contrast dependence of center and surround integration in primary visual cortex of the cat. J. Vis. 9(1), 20.1–15, (2009)

    Google Scholar 

  56. J. Weng, J.L. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, E. Thelen, Autonomous mental development by robots and animals. Science 291(5504), 599–600 (2001)

    Article  Google Scholar 

  57. S.P. Wilson, J.S. Law, B. Mitchinson, T.J. Prescott, J.A. Bednar, Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS One, 5(1), (2010)

    Google Scholar 

  58. F. Wolf, T. Geisel, Universality in visual cortical pattern formation. J. Physiol. Paris 97(2–3), 253–264 (2003)

    Article  Google Scholar 

  59. J. Wolfe, L.A. Palmer, Temporal diversity in the lateral geniculate nucleus of cat. Vis. Neurosci. 15(4), 653–675 (1998)

    Article  Google Scholar 

  60. R.O.L. Wong, Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47 (1999)

    Article  Google Scholar 

  61. H. Yu, B.J. Farley, D.Z. Jin, M. Sur, The coordinated mapping of visual space and response features in visual cortex. Neuron 47(2), 267–280 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to all of the collaborators whose modelling work is reviewed here, and to the members of the Developmental Computational Neuroscience research group, the Institute for Adaptive and Neural Computation, and the Doctoral Training Centre in Neuroinformatics, at the University of Edinburgh, for discussions and feedback on many of the models. This work was supported in part by the UK EPSRC and BBSRC Doctoral Training Centre in Neuroinformatics, under grants EP/F500385/1 and BB/F529254/1, and by the US NIMH grant R01-MH66991. Computational resources were provided by the Edinburgh Compute and Data Facility (ECDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Bednar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bednar, J.A. (2014). Constructing Complex Systems Via Activity-Driven Unsupervised Hebbian Self-Organization. In: Kowaliw, T., Bredeche, N., Doursat, R. (eds) Growing Adaptive Machines. Studies in Computational Intelligence, vol 557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55337-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55337-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55336-3

  • Online ISBN: 978-3-642-55337-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics