Skip to main content

Gallium Arsenide Disks as Optomechanical Resonators

  • Chapter
  • First Online:
Book cover Cavity Optomechanics

Part of the book series: Quantum Science and Technology ((QST))

Abstract

The interaction of light with mechanical motion—optomechanics  [14]—is now investigated in a wide variety of experimental settings. In the last years, the field also benefited from the advances of nanophotonics. We discuss here the merits of Gallium Arsenide (GaAs) optomechanical disk resonators, which bring together high mechanical frequency, ultra-strong optomechanical coupling and low optical/mechanical dissipation. Based on a relatively simple geometry, these miniature optomechanical resonators permit a complete on-chip optical integration, a natural interfacing with optically active elements and the combination with optoelectronics architectures typical of III–V semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.J. Kippenberg, K.J. Vahala, Science 321(5893), 1172 (2008)

    Article  ADS  Google Scholar 

  2. I. Favero, K. Karrai, Nat. Photonics 3, 201 (2009)

    Article  ADS  Google Scholar 

  3. F. Marquardt, S.M. Girvin, Physics 2, 40 (2009)

    Article  Google Scholar 

  4. M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, J. Opt. Soc. Am. B 27(6), A189 (2010)

    Article  ADS  Google Scholar 

  5. B. Gayral, J.M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, J.L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999)

    Article  ADS  Google Scholar 

  6. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W.V. Schoenfeld, P.M. Petroff, Appl. Phys. Lett. 78, 3932 (2001)

    Article  ADS  Google Scholar 

  7. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Phys. Rev. Lett. 95, 067401 (2005)

    Google Scholar 

  8. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, R.A. Logan, Appl. Phys. Lett. 60, 289 (1992)

    Google Scholar 

  9. A. Andronico, I. Favero, G. Leo, Opt. Lett. 33, 2026–2028 (2008)

    Article  ADS  Google Scholar 

  10. J. Miao, H.L. Hartnagel, B.L. Weiss, R.J. Wilson, Electron. Lett. 31(13), 1047 (1995)

    Google Scholar 

  11. L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Phys. Rev. Lett. 105, 263903 (2010)

    Article  ADS  Google Scholar 

  12. L. Ding, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Proc. SPIE 7712, 771211 (2010)

    Article  Google Scholar 

  13. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Appl. Phys. Lett. 98, 113108 (2011)

    Article  ADS  Google Scholar 

  14. A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, G. Leo, J. Europ. Opt. Soc. Rap. Public. 3, 08030 (2008)

    Article  Google Scholar 

  15. A. Andronico, Etude électromagnétique d’émetteurs intégrés infrarouges et THz en AlGaAs. PhD thesis 2008

    Google Scholar 

  16. Z. Hao, S. Pourkamali, F. Ayazi, J. Microelectromech. Syst. 13(6), 1043 (2004)

    Article  Google Scholar 

  17. Z. Hao, F. Ayazi, Sens. Actuators A 134, 582 (2007)

    Article  Google Scholar 

  18. I. Wilson-Rae, Phys. Rev. B 77, 245418 (2008)

    Article  ADS  Google Scholar 

  19. A. Safavi-Naeini, O. Painter, Opt. Express 18(14), 14926 (2010)

    Article  ADS  Google Scholar 

  20. D.T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lematre, S. Ducci, G. Leo, I. Favero, Appl. Phys. Lett. 103, 241112 (2013)

    Google Scholar 

  21. G. Bahl, M. Tomes, F. Marquardt, T. Carmon, Nat. Phys. 8, 203 (2012)

    Article  Google Scholar 

  22. I. Favero, Nat. Phys. 8, 180 (2012)

    Article  Google Scholar 

  23. P.T. Rakich, P. Davids, Z. Wang, Opt. Express 18(14), 14439 (2010)

    Article  ADS  Google Scholar 

  24. C. Baker, W. Hease, T. Nguyen, A. Andronico, G. Leo, S. Ducci, I. Favero (2014) arXiv:1403.4269

  25. W.C. Jiang, X. Lu, J. Zhang, Q. Lin, Opt. Express 20(14), 15991 (2012)

    Article  Google Scholar 

  26. X. Sun, X. Zhang, H.X. Tang, App. Phys. Lett. 100, 173116 (2012)

    Article  ADS  Google Scholar 

  27. G. Brambilla, V. Finazzi, D.J. Richardson, Opt. Express 12, 2258 (2004)

    Article  ADS  Google Scholar 

  28. L. Ding, C. Belacel, S. Ducci, G. Leo, I. Favero, Appl. Opt. 49(13), 2441 (2010)

    Article  ADS  Google Scholar 

  29. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, G. Leo, Leo. Appl. Phys. Lett. 94, 171110 (2009)

    Article  ADS  Google Scholar 

  30. M. Savanier, A. Andronico, C. Manquest, A. Lemaitre, E. Galopin, I. Favero, S. Ducci, G. Leo, Opt. Lett. 36, 2955 (2011)

    Article  ADS  Google Scholar 

  31. S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto, Appl. Phys. Lett. 94, 051110 (2009)

    Article  ADS  Google Scholar 

  32. C. Baker, C. Belacel, A. Andronico, P. Senellart, A. Lemaitre, E. Galopin, S. Ducci, G. Leo, I. Favero, Appli. Phys. Lett. 99, 151117 (2011)

    Article  ADS  Google Scholar 

  33. C.P. Michael, K. Srinivasan, T.J. Johnson, O. Painter, K.H. Lee, K. Hennessy, H. Kim, EHu Appl, Phys. Lett. 90, 051108 (2007)

    Google Scholar 

  34. D. Parrain, C. Baker, T. Verdier, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, Appl. Phys. Lett. 100, 242105 (2012)

    Article  ADS  Google Scholar 

  35. J. Wang, Z. Ren, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1607 (2004)

    Article  ADS  Google Scholar 

  36. J. Restrepo, C. Ciuti, I. Favero, Phys. Rev. Lett. 112, 013601 (2014)

    Google Scholar 

  37. O. Kyriienko, T.C.H. Liew, I.A. Shelykh, Phys. Rev. Lett. 112, 076402 (2014)

    Google Scholar 

Download references

Acknowledgments

I. Favero acknowledges support of the French ANR trough the Nomade and QDOM projects, of the C-Nano IdF through the Naomi project, and of the ERC through the Ganoms project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Favero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Favero, I. (2014). Gallium Arsenide Disks as Optomechanical Resonators. In: Aspelmeyer, M., Kippenberg, T., Marquardt, F. (eds) Cavity Optomechanics. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55312-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55312-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55311-0

  • Online ISBN: 978-3-642-55312-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics