Skip to main content

Optomechanical Crystal Devices

  • Chapter
  • First Online:
Cavity Optomechanics

Part of the book series: Quantum Science and Technology ((QST))

Abstract

We present the basic ideas and techniques utilized in recent work on optomechanical crystals. Optomechanical crystals are nanofabricated cavity optomechanical systems where the confinement of light and motion is obtained by nanopatterning periodic structures in thin-films. In this chapter we start from a basic review of the properties of optical and elastic waves in nanostructures, before introducing the properties and design of periodic structures. After reviewing fabrication and characterization methods, experimental results in 1D and 2D systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a way, this approach is more general, since it applies to non-crystalline materials as well, so long as the wavelengths are larger than the interatomic spacing.

  2. 2.

    Summations are implied over repeated indices.

  3. 3.

    The optical modes of structures in this chapter arise from engineering this TE mode, and thus in the following sections we will only plot the value of \(E_x\) on the \(z=0\) plane when representing optical mode profiles.

  4. 4.

    We refer the reader to a text on condensed matter physics [16] for a completely analogous treatment of these concepts for electrons.

  5. 5.

    The band diagrams for phonons shown in Figs. 10.6, 10.7, and 10.8 look similar and hide this essential distinction. We remind the reader that the bands for the 2D structures represent modes along a path traversing the boundary of the FBZ, while in the band diagram for a 1D structure shown in Fig. 10.6, all of the points in the FBZ are represented.

  6. 6.

    It is possible to generate mechanical modes with nonzero optomechanical coupling that do not have the “correct” Bloch function \(\sigma _y\) mirror symmetry (e.g, the ‘accordion’ modes demonstrated in Ref. [37]). However, a higher order resonance of the defect must be used. We do not consider these designs here as they generally have lower optomechanical coupling rates than fundamental modes formed from \(\varGamma \)-point Bloch functions with \((+_y)\) symmetry.

  7. 7.

    Recently 1D-OMC cavities with full phononic bandgaps have been demonstrated [66].

References

  1. A.H. Safavi-Naeini, O. Painter, New J. Phys. 13, 013017 (2011)

    Article  ADS  Google Scholar 

  2. D. Chang, A.H. Safavi-Naeini, M. Hafezi, O. Painter, New J. Phys. 13, 023003 (2011)

    Article  ADS  Google Scholar 

  3. G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, Phys. Rev. Lett. 107(4), 043603 (2011)

    Article  ADS  Google Scholar 

  4. M. Schmidt, M. Ludwig, F. Marquardt, New J. Phys. 14(12), 125005 (2012)

    Article  ADS  Google Scholar 

  5. M. Schmidt, V. Peano, F. Marquardt (2013), arXiv:1311.7095

  6. A.H. Safavi-Naeini, T.P.M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D. Chang, O. Painter, Nature 472, 69 (2011)

    Article  ADS  Google Scholar 

  7. J. Chan, T.P.M. Alegre, A.H. Safavi-Naeini, J.T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Nature 478, 89 (2011)

    Article  ADS  Google Scholar 

  8. A.H. Safavi-Naeini, J. Chan, J.T. Hill, T.P.M. Alegre, A. Krause, O. Painter, Phys. Rev. Lett. 108(3), 033602 (2012)

    Article  ADS  Google Scholar 

  9. J.T. Hill, A.H. Safavi-Naeini, J. Chan, O. Painter, Nat. Commun. 3, 1196 (2012)

    Article  ADS  Google Scholar 

  10. J. Chan, A.H. Safavi-Naeini, J.T. Hill, S. Meenehan, O. Painter, Appl. Phys. Lett. 101(8), 081115 (2012)

    Article  ADS  Google Scholar 

  11. A.H. Safavi-Naeini, J. Chan, J.T. Hill, S. Groeblacher, H. Miao, Y. Chen, M. Aspelmeyer, O. Painter, New J. Phys 15(3), 035007 (2013)

    Article  ADS  Google Scholar 

  12. COMSOL Multiphysics 3.5, http://www.comsol.com/

  13. S.G. Johnson, J.D. Joannopoulos, Opt. Express 8(3), 173 (2001)

    Article  ADS  Google Scholar 

  14. J.V. Bladel, Electromagnetic Fields, 2nd edn. (IEEE Press, Wiley-Interscience, 2007)

    Book  Google Scholar 

  15. S. Haroche, J.M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, USA, 2006)

    Book  Google Scholar 

  16. C. Kittel, Introduction to Solid State Physics (Wiley, New Jersey, 2005)

    Google Scholar 

  17. S. John, Phys. Rev. Lett. 58(23), 2486 (1987)

    Article  ADS  Google Scholar 

  18. E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat, Appl. Phys. Lett. 51, 2222 (1987)

    Article  ADS  Google Scholar 

  19. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71(13), 2022 (1993)

    Article  ADS  Google Scholar 

  20. M. Sigalas, E. Economou, J. Sound Vib. 158(2), 377 (1992)

    Article  ADS  Google Scholar 

  21. J. Joannopoulos, S. Johnson, J. Winn, R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)

    Google Scholar 

  22. B.A. Auld, Acoustic fields and waves in solids, vol. 1 (Wiley, New York, 1973)

    Google Scholar 

  23. D. Marcuse, Theory of dielectric optical waveguides (Access Online via Elsevier, Amsterdam, 1974)

    Google Scholar 

  24. K. Graff, Wave Motion in Elastic Solids (Dover Publications, New York, 1975)

    Google Scholar 

  25. A. Yariv, P. Yeh, Optical waves in crystals, vol. 5 (Wiley, New York, 1984)

    Google Scholar 

  26. A.N. Cleland, Foundations of Nanomechanics: from Solid-State Theory to Device Applications (Springer, Heidelberg, 2003)

    Google Scholar 

  27. A. Fallahkhair, K. Li, T. Murphy, J. Lightwave Technol. 26(11), 1423 (2008)

    Article  ADS  Google Scholar 

  28. A.N. Cleland, M.L. Roukes, Nature 392, 160 (1998)

    Article  ADS  Google Scholar 

  29. M.D. Chabot, J. Moreland, L. Gao, S.H. Liou, C. Miller, J. Microelectromech. Syst. 14(5), 1118 (2005)

    Google Scholar 

  30. P.H. Kim, C. Doolin, B.D. Hauer, A.J.R. MacDonald, M.R. Freeman, P.E. Barclay, J.P. Davis, Appl. Phys. Lett. 102(5), 053102 (2013)

    Article  ADS  Google Scholar 

  31. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, E.P. Ippen, Nature 390(6656), 143 (1997)

    Article  ADS  Google Scholar 

  32. C. Sauvan, P. Lalanne, J.P. Hugonin, Phys. Rev. B 71(16), 165118 (2005)

    Article  ADS  Google Scholar 

  33. P. Barclay, K. Srinivasan, O. Painter, Opt. Express 13, 801 (2005)

    Article  ADS  Google Scholar 

  34. L.D. Haret, T. Tanabe, E. Kuramochi, M. Notomi, Opt. Express 17(23), 21108 (2009)

    Article  Google Scholar 

  35. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature 404(6781), 974 (2000)

    Article  ADS  Google Scholar 

  36. S.M. Meenehan et al. Thermalization properties at mK temperatures of a nanoscale optomechanical resonator with acoustic-bandgap shield (2014), arXiv:1403.3703

  37. M. Eichenfield, J. Chan, R. Camacho, K. Vahala, O. Painter, Nature 462(7269), 78 (2009)

    Article  ADS  Google Scholar 

  38. M. Eichenfield, J. Chan, A.H. Safavi-Naeini, K.J. Vahala, O. Painter, Opt. Express 17(22), 20078 (2009)

    Article  ADS  Google Scholar 

  39. A.H. Safavi-Naeini, O. Painter, Opt. Express 18(14), 14926 (2010)

    Article  ADS  Google Scholar 

  40. T.P.M. Alegre, A. Safavi-Naeini, M. Winger, O. Painter, Opt. Express 19, 5658 (2011)

    Article  ADS  Google Scholar 

  41. P.L. Yu, K. Cicak, N. Kampel, Y. Tsaturyan, T. Purdy, R. Simmonds, C. Regal, (2013). arXiv:1312.0962

  42. A.H. Safavi-Naeini, J.T. Hill, S. Meenehan, J. Chan, S. Groeblacher, O. Painter, (2014), arXiv:1401.1493

  43. K. Srinivasan, O. Painter, Opt. Express 10(15), 670 (2002)

    Article  ADS  Google Scholar 

  44. Y. Akahane, T. Asano, B.S. Song, S. Noda, Nature 425(6961), 944 (2003)

    Article  ADS  Google Scholar 

  45. B.S. Song, S. Noda, T. Asano, Y. Akahane, Nat. Mater. 4(3), 207 (2005)

    Article  ADS  Google Scholar 

  46. M. Borselli, T.J. Johnson, O. Painter, App. Phys. Lett. 88, 131114 (2006)

    Article  ADS  Google Scholar 

  47. J. Chan, Laser cooling of an optomechanical crystal resonator to its quantum ground state of motion, Ph.D. thesis, California Institute of Technology 2012

    Google Scholar 

  48. A.R. Md Zain, N.P. Johnson, M. Sorel, R.M. De La Rue, Opt. Express 16(16), 12084 (2008).

    Google Scholar 

  49. M. Notomi, E. Kuramochi, H. Taniyama, Opt. Express 16(15), 11095 (2008)

    Article  ADS  Google Scholar 

  50. J. Chan, M. Eichenfield, R. Camacho, O. Painter, Opt. Express 17(5), 3802 (2009)

    Article  ADS  Google Scholar 

  51. P.B. Deotare, M.W. McCutcheon, I.W. Frank, M. Khan, M. Loncar, Appl. Phys. Lett. 94(12), 121106 (2009)

    Article  ADS  Google Scholar 

  52. S.G. Johnson, M. Ibanescu, M.A. Skorobogatiy, O. Weisberg, J.D. Joannopoulos, Y. Fink, Phys. Rev. E 65(6), 066611 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  53. M.J. Burek, N.P. de Leon, B.J. Shields, B.J.M. Hausmann, Y. Chu, Q. Quan, A.S. Zibrov, H. Park, M.D. Lukin, M. Lonar, Nano Lett. 12(12), 6084 (2012)

    Article  ADS  Google Scholar 

  54. L. Li, M. Trusheim, O. Gaathon, K. Kisslinger, C.J. Cheng, M. Lu, D. Su, X. Yao, H.C. Huang, I. Bayn, J. Vac. Sci. Technol., B 31(6), 06FF01 (2013)

    Google Scholar 

  55. P. Rath, S. Khasminskaya, C. Nebel, C. Wild, W.H. Pernice, Nat. Commun. 4, 1690 (2013)

    Article  ADS  Google Scholar 

  56. M. Radulaski, T.M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, J. Vuckovic, Opt. Express 21(26), 32623 (2013)

    Article  ADS  Google Scholar 

  57. J. Cardenas, M. Zhang, C.T. Phare, S.Y. Shah, C.B. Poitras, B. Guha, M. Lipson, Opt. Express 21(14), 16882 (2013)

    Article  ADS  Google Scholar 

  58. C.P. Michael, M. Borselli, T.J. Johnson, C. Chrystal, O. Painter, Opt. Express 15, 4745 (2007)

    Article  ADS  Google Scholar 

  59. B.D. Hauer, P.H. Kim, C. Doolin, A.J. MacDonald, H. Ramp, J.P. Davis, (2014), arXiv:1401.5482

  60. J. Thompson, T. Tiecke, N. de Leon, J. Feist, A. Akimov, M. Gullans, A. Zibrov, V. Vuleti, M. Lukin, Science 340(6137), 1202 (2013)

    Article  ADS  Google Scholar 

  61. A.H. Safavi-Naeini, S. Groblacher, J.T. Hill, J. Chan, M. Aspelmeyer, O. Painter, Nature 500(7461), 185 (2013)

    Article  ADS  Google Scholar 

  62. S. Groeblacher, J.T. Hill, A.H. Safavi-Naeini, J. Chan, O. Painter, Appl. Phys. Lett. 103(18), 181104 (2013)

    Article  ADS  Google Scholar 

  63. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77(2), 633 (2005)

    Article  ADS  Google Scholar 

  64. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  65. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T.J. Kippenberg, I. Robert-Philip, Phys. Rev. Lett. 106(20), 203902 (2011)

    Article  ADS  Google Scholar 

  66. J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, D. Djafari-Rouhani, F. Alzina, A. Martnez, C.M. Sotomayor Torres, (2014), arXiv:1401.1691

  67. S.J.M. Habraken, K. Stannigel, M.D. Lukin, P. Zoller, P. Rabl, New J. Phys. 14(11), 115004 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  68. A. Tomadin, S. Diehl, M.D. Lukin, P. Rabl, P. Zoller, Phys. Rev. A 86(3), 033821 (2012)

    Article  ADS  Google Scholar 

  69. M. Ludwig, F. Marquardt, Phys. Rev. Lett. 111, 073603 (2013)

    Article  ADS  Google Scholar 

  70. P. Rabl, Phys. Rev. Lett. 107(6), 63601 (2011)

    Article  ADS  Google Scholar 

  71. A. Nunnenkamp, K. Borkje, S. Girvin, Phys. Rev. Lett. 107(6), 63602 (2011)

    Article  ADS  Google Scholar 

  72. M. Ludwig, A.H. Safavi-Naeini, O. Painter, F. Marquardt, Phys. Rev. Lett. 109(6), 063601 (2012)

    Article  ADS  Google Scholar 

  73. K. Stannigel, P. Komar, S.J.M. Habraken, S.D. Bennett, M.D. Lukin, P. Zoller, P. Rabl, Phys. Rev. Lett. 109, 013603 (2012)

    Article  ADS  Google Scholar 

  74. M. Davanco, J. Chan, A.H. Safavi-Naeini, O. Painter, K. Srinivasan, Opt. Express 20(22), 24394 (2012)

    Article  ADS  Google Scholar 

  75. H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, Opt. Express 22(1), 916 (2014)

    Article  ADS  Google Scholar 

  76. J. Bochmann, A. Vainsencher, D.D. Awschalom, A.N. Cleland, Nat. Phys. (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the significant contributions to this work by Jasper Chan, Matt Eichenfield, Jeff Hill, Simon Gröblacher, Thiago Alegre, Alex Krause, Sean Meenehan, and Justin Cohen. The work was supported by the DARPA ORCHID and MESO programs, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. ASN gratefully acknowledges support from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Safavi-Naeini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Safavi-Naeini, A.H., Painter, O. (2014). Optomechanical Crystal Devices. In: Aspelmeyer, M., Kippenberg, T., Marquardt, F. (eds) Cavity Optomechanics. Quantum Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55312-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55312-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55311-0

  • Online ISBN: 978-3-642-55312-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics