Skip to main content

VASER Technology for Ultrasound-Assisted Lipoplasty

  • Chapter
  • First Online:
High Definition Body Sculpting

Abstract

Surgical instruments that vibrate at frequencies above 20,000 Hz are commonly referred to as ultrasonic surgical devices. In practice, most of these surgical instruments oscillate or vibrate between 20 and 60 kHz. The vibration amplification of sound energy at resonance (VASER®) device represents a third-generation ultrasound device for assisted lipoplasty, employing probes that oscillate 36,000 times per second. VASER® technology allows safe and efficient emulsification of fat in all subcutaneous layers, including the superficial subdermal layer. The unique characteristics of the VASER® technology and instrumentation facilitate the delicate work that is required during high-definition body sculpting. Correct application of VASER® enables smooth, even results and optimizes postoperative skin retraction. VASER® is also an excellent tool to facilitate fat harvesting and grafting during the body contouring procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cimino WW (2010) History of ultrasound-assisted lipoplasty. In: Shiffman MA, Di Giuseppe A (eds) Body contouring: art, science, and clinical practice. Springer, Berlin, p 399

    Chapter  Google Scholar 

  2. Panetta NJ, Gupta DM, Kwan MD, Wan DC, Commons GW, Longaker MT (2009) Tissue harvest by means of suction assisted or third-generation ultrasound-assisted lipoaspiration has no effect on osteogenic potential of human adipose-derived stromal cells. Plast Reconstr Surg 124(1):65–73

    Article  CAS  PubMed  Google Scholar 

  3. Cimino WW (1999) The physics of soft tissue fragmentation using ultrasonic frequency vibrations of metal probes. Clin Plast Surg 26:447–461

    CAS  PubMed  Google Scholar 

  4. Kelman C (1967) Phacoemulsification and aspiration. A new technique of cataract removal. A preliminary report. Am J Ophthalmol 64(1):23–25

    CAS  PubMed  Google Scholar 

  5. Ogawa T, Hattori R, Yamamoto T, Gotoh M (2011) Safe use of ultrasonically activated devices based on current studies. Expert Rev Med Devices 8(3):319–324

    Article  PubMed  Google Scholar 

  6. Scuderi N, Devita R, D’Andrea F, Vonella M (1987) Nuove prospettive nella liposuzione la lipoemulsificazone. Giorn Chir Plast Ricostr ed Estetica 2(1):33–39

    Google Scholar 

  7. Zocchi ML (1993) Clinical aspects of ultrasonic liposculpture. Perspect Plast Surg 7:153–174

    Google Scholar 

  8. Zocchi ML (1996) Ultrasonic assisted lipoplasty. Clin Plast Surg 23(4):575–598

    CAS  PubMed  Google Scholar 

  9. Troilius C (1999) Ultrasound-assisted lipoplasty: is it really safe? Aesthet Plast Surg 23(5):307–311

    Article  CAS  Google Scholar 

  10. Baxter RA (1999) Histologic effects of ultrasound-assisted lipoplasty. Aesthet Surg J 19:109–114

    Article  Google Scholar 

  11. Grolleau JL, Rouge D, Chavoin JP, Costagliola M (1997) Severe cutaneous necrosis after ultrasound lipolysis. Medicolegal aspects and review. Ann Chir Plast Esthet 42(1):31–36

    CAS  PubMed  Google Scholar 

  12. Cimino WW (2001) Ultrasonic surgery: power quantification and efficiency optimization. Aesthet Surg J 21(3):233–240

    Article  CAS  PubMed  Google Scholar 

  13. Cimino WW (2010) Ultrasound-assisted lipoplasty: basic physics, tissue interactions, and related results/complications. In: Shiffman MA, Di Giuseppe A (eds) Body contouring: art, science, and clinical practice. Springer, Berlin, p 392

    Google Scholar 

  14. Nagy MW, Vanek PF Jr (2012) A multicenter, prospective, randomized, single-blind, controlled clinical trial comparing VASER-assisted lipoplasty and suction-assisted lipoplasty. Plast Reconstr Surg 129(4):681e–689e

    Article  CAS  PubMed  Google Scholar 

  15. Cimino WW (2006) VASER-assisted lipoplasty: technology and technique. In: Shiffman MA, Di Giuseppe A (eds) Liposuction principles and practice. Springer-Verlag Berlin Heidelberg, pp 239–244

    Google Scholar 

  16. Jewell ML, Fodor PB, de Souza Pinto EB, Al Shammari MA (2002) Clinical application of VASER–assisted lipoplasty: a pilot clinical study. Aesthet Surg J 22(2):131–146

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoyos, A.E., Prendergast, P.M. (2014). VASER Technology for Ultrasound-Assisted Lipoplasty. In: High Definition Body Sculpting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54891-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54891-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54890-1

  • Online ISBN: 978-3-642-54891-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics