Skip to main content

Porous Carbons for Carbon Dioxide Capture

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Porous carbons play an important role in CO2 adsorption and separation due to their developed porosity, excellent stability, wide availability, and tunable surface chemistry. In this chapter, the synthesis strategies of porous carbon materials and evaluation of their performance in CO2 capture are reviewed. For clarity, porous carbons are mainly classified into the following categories: conventional activated carbons (ACs), renewable-resources-derived porous carbons, synthetic polymer-based porous carbons, graphitic porous carbons, etc. In each category, macroscopic and microscopic morphologies, synthesis principles, pore structures, composition and surface chemistry features as well as their CO2 capture behavior are included. Among them, porous carbons with targeted functionalization and a vast range of nanostructured carbons (carbon nanofibers, CNTs, graphene, etc.) for CO2 capture are being created at an increasing rate and are highlighted. After that, the main influence factors determining CO2 capture performance including the pore features and heteroatom decoration are particularly discussed. In the end, we briefly summarize and discuss the future prospectives of porous carbons for CO2 capture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175

    Google Scholar 

  2. Kyotani T (2006) Synthesis of various types of nano carbons using the template technique. Bull Chem Soc Jpn 79:1322–1337

    Google Scholar 

  3. Himeno S, Komatsu T, Fujita S (2005) High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J Chem Eng Data 50:369–376

    Google Scholar 

  4. Olivares-Marín M, Maroto-Valer M (2012) Development of adsorbents for CO2 capture from waste materials: a review. Greenhouse Gas Sci Technol 2:20–35

    Google Scholar 

  5. Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806

    Google Scholar 

  6. Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323–7327

    Google Scholar 

  7. Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22:13911–13913

    Google Scholar 

  8. Shen W, He Y, Zhang S, Li J, Fan W (2012) Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem 5:1274–1279

    Google Scholar 

  9. Marco-Lozar JP, Kunowsky M, Suárez-García F, Carruthers JD, Linares-Solano A (2012) Activated carbon monoliths for gas storage at room temperature. Energy Environ Sci 5:9833–9842

    Google Scholar 

  10. Thote JA, Iyer KS, Chatti R, Labhsetwar NK, Biniwale RB, Rayalu SS (2010) In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 48:396–402

    Google Scholar 

  11. Sevilla M, Valle-Vigón P, Fuerte AB (2011) N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21:2781–2787

    Google Scholar 

  12. White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418

    Google Scholar 

  13. Grzyb B, Hildenbrand C, Berthon-Fabry S, Bégin D, Job N, Rigacci A, Achard P (2010) Functionalisation and chemical characterisation of cellulose-derived carbon aerogels. Carbon 48:2297–2307

    Google Scholar 

  14. ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903

    Google Scholar 

  15. Titirici MM, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789

    Google Scholar 

  16. Titirici MM, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212

    Google Scholar 

  17. Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822

    Google Scholar 

  18. Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771

    Google Scholar 

  19. Sevilla M, Falco C, Titirici M-M, Fuertes AB (2012) High-performance CO2 sorbents from algae. RSC Adv 2:12792–12797

    Google Scholar 

  20. Gaweł B, Gaweł K, Øye G (2010) Sol–gel synthesis of non-silica monolithic materials. Materials 3:2815–2833

    Google Scholar 

  21. Kadib AE, Chimenton R, Sachse A, Fajula F, Galarneau A, Coq B (2009) Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew Chem Int Ed 48:4969–4972

    Google Scholar 

  22. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Google Scholar 

  23. Yuan Z-Y, Su B-L (2006) Insights into hierarchically meso–macroporous structured materials. J Mater Chem 16:663–667

    Google Scholar 

  24. Lu AH, Hao GP (2013) Porous materials for carbon dioxide capture. Annu Rep Sect A: Inorg Chem 109:484–503

    Google Scholar 

  25. Lu A-H, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805

    Google Scholar 

  26. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Google Scholar 

  27. Hoheisel TN, Schrettl S, Szilluweit R, Frauenrath H (2010) Nanostructured carbonaceous materials from molecular precursors. Angew Chem Int Ed 49:6496–6515

    Google Scholar 

  28. Tao Y, Endo M, Kaneko K (2009) Hydrophilicity-controlled carbon aerogels with high mesoporosity. J Am Chem Soc 131:904–905

    Google Scholar 

  29. Silva AMT, Machado BF, Figueiredo JL, Faria JL (2009) Controlling the surface chemistry of carbon xerogels using HNO3 hydrothermal activation. Carbon 47:1670–1679

    Google Scholar 

  30. Stein A, Wang Z, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21:265–293

    Google Scholar 

  31. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667

    Google Scholar 

  32. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    Google Scholar 

  33. Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2008) Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents. Langmuir 24:2820–2825

    Google Scholar 

  34. Gutiérrez MC, Rubio F, del Monte F (2010) Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon−carbon nanotube composites. Chem Mater 22:2711–2719

    Google Scholar 

  35. Carriazo D, Gutiérrez MC, Ferrer ML, del Monte F (2010) Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monolith. Schem Mater 22:6146–6152

    Google Scholar 

  36. Mulik S, Sotiriou-Leventis C, Leventis N (2008) Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels. Chem Mater 20:6985–6997

    Google Scholar 

  37. Leventis N, Sotiriou-Leventis C, Chandrasekaran N, Mulik S, Larimore ZJ, Lu H, Churu G, Mang JT (2010) Multifunctional polyurea aerogels from isocyanates and water. A structure-property case study. Chem. Mater. 22:6692–6710

    Google Scholar 

  38. Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, Mang JT, Leventis N (2010) One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem 20:6978–9666

    Google Scholar 

  39. Wan Y, Qian X, Jia N, Wang Z, Li H, Zhao D (2008) Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon. Chem Mater 20:1012–1018

    Google Scholar 

  40. Sepehri S, García BB, Zhang Q, Cao G (2009) Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen. Carbon 47:1436–1443

    Google Scholar 

  41. Hao G-P, Li W-C, Qian D, Lu A-H (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853–857

    Google Scholar 

  42. Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991

    Google Scholar 

  43. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Google Scholar 

  44. Tien BM, Xu MW, Liu JF (2010) Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery. Mater Lett 64:1465–1467

    Google Scholar 

  45. Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42:169–175

    Google Scholar 

  46. Fujikawa D, Uota M, Sakai G, Kijima T (2007) Shape-controlled synthesis of nanocarbons from resorcinol–formaldehyde nanopolymers using surfactant-templated vesicular assemblies. Carbon 45:1289–1295 (Original Research Article)

    Google Scholar 

  47. Liu L, Deng QF, Hou XX, Yuan ZY (2012) User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. J Mater Chem 22:15540–15548

    Google Scholar 

  48. Gu JM, Kim WS, Hwang YK, Huh S (2013) Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon 56:208–217

    Google Scholar 

  49. Liang CD, Hong KL, Guiochon GA, Mays JW, Dai S (2004) Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed 43:5785–5789

    Google Scholar 

  50. Valkama S, Nykänen A, Kosonen H, Ramani R, Tuomisto F, Engelhardt P, Brinke G, Ikkala O, Ruokolainen J (2007) Hierarchical porosity in self-assembled polymers: post-modification of block copolymer-phenolic resin complexes by pyrolysis allows the control of micro- and mesoporosity. Adv Funct Mater 17:183–190

    Google Scholar 

  51. Liang CD, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128:5316–5317

    Google Scholar 

  52. Saha D, Deng S (2010) Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci 345:402–409

    Google Scholar 

  53. Wang X, Liang C, Dai S (2008) Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions. Langmuir 24:7500–7505

    Google Scholar 

  54. Liang C, Dai S (2009) Dual phase separation for synthesis of bimodal meso-/macroporous carbon monoliths. Chem Mater 21:2115–2124

    Google Scholar 

  55. Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643

    Google Scholar 

  56. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23:2322–2328

    Google Scholar 

  57. Liu L, Wang F-Y, Shao G-S, Yuan Z-Y (2010) A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. Carbon 48:2089–2099

    Google Scholar 

  58. Gutiérrez MC, Picó F, Rubio F, Amarilla JM, Palomares FJ, Ferrer ML, Monte F, Rojo JM (2009) PPO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. J Mater Chem 19:1236–1240

    Google Scholar 

  59. Zhao X, Wang A, Yan J, Sun G, Sun L, Zhang T (2010) Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem Mater 22:5463–5473

    Google Scholar 

  60. Hao G-P, Li W-C, Wang S, Wang G-H, Qi L, Lu A-H (2011) Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores. Carbon 49:3762–3772

    Google Scholar 

  61. Hao G-P, Li W-C, Qian D, Wang G-H, Zhang W-P, Zhang T, Wang A-Q, Schüth F, Bongard H-J, Lu A-H (2011) Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J Am Chem Soc 133:11378–11388

    Google Scholar 

  62. Wang Z, Li F, Ergang NS, Stein A (2006) Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon−carbon nanocomposites. Chem Mater 18:5543–5553

    Google Scholar 

  63. Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley PA, Wang H, Zhao D (2007) Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem Mater 19:3271–3277

    Google Scholar 

  64. Xue C, Tu B, Zhao D (2008) Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams. Adv Funct Mater 18:3914–3921

    Google Scholar 

  65. Wei H, Lv Y, Han L, Tu B, Zhao D (2011) Facile synthesis of transparent mesostructured composites and corresponding crack-free mesoporous carbon/silica monoliths. Chem Mater 23:2353–2360

    Google Scholar 

  66. Liu CY, Li LX, Song HH, Chen XH (2007) Facile synthesis of ordered mesoporous carbons from F108/resorcinol–formaldehyde composites obtained in basic media. Chem Commun 7:757–759

    Google Scholar 

  67. Feng D, Lv YY, Wu ZX, Dou YQ, Han L, Sun ZK, Xia YY, Zheng GF, Zhao DY (2011) Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 133:15148–15150

    Google Scholar 

  68. Rodriguez AT, Li XF, Wang J, Steen WA, Fan HY (2007) Facile synthesis of nanostructured carbon through self-assembly between block copolymers and carbohydrates. Adv Funct Mater 17:2710–2716

    Google Scholar 

  69. Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44:7053–7059

    Google Scholar 

  70. Yoshimune M, Yamamoto T, Nakaiwa M, Haraya K (2008) Preparation of highly mesoporous carbon membranes via a sol–gel process using resorcinol and formaldehyde. Carbon 46:1031–1036

    Google Scholar 

  71. Hao G-P, Jin Z-Y, Sun Q, Zhang X-Q, Zhang J-T, Lu A-H (2013) Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties. Energy Environ Sci 2013(6):3740–3747

    Google Scholar 

  72. Sun X, Li Y (2005) Hollow carbonaceous capsules from glucose solution. J Colloid Interface Sci 291:7–12

    Google Scholar 

  73. Li Y, Chen J, Xu Q, He L, Chen Z (2009) Controllable route to solid and hollow monodisperse carbon nanospheres. J Phys Chem C 113:10085–10089

    Google Scholar 

  74. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Google Scholar 

  75. Wickramaratne NP, Jaroniec M (2013) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5:1849–1855

    Google Scholar 

  76. Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1:112–116

    Google Scholar 

  77. Wickramaratne NP, Perera VS, Ralph JM, Huang SD, Jaroniec M (2013) Cysteine-assisted tailoring of adsorption properties and particle size of polymer and carbon spheres. Langmuir 29(12):4032–4038

    Google Scholar 

  78. Zeng Q, Wu D, Zou C, Xu F, Fu R, Li Z, Liang Y, Su D (2010) Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene–divinylbenzene copolymer nanospheres. Chem Commun 46:5927–5929

    Google Scholar 

  79. Jiang P, Bertone JF, Colvin VL (2001) A lost-wax approach to monodisperse colloids and their crystals. Science 291:453–457

    Google Scholar 

  80. Lu A-H, Hao G-P, Sun Q (2011) Can carbon spheres be created through the Stöber method? Angew Chem Int Ed 50:9023–9025

    Google Scholar 

  81. Wang S, Li W-C, Hao G-P, Hao Y, Sun Q, Zhang X-Q, Lu A-H (2011) Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J Am Chem Soc 133:15304

    Google Scholar 

  82. Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863

    Google Scholar 

  83. Brun N, Prabaharan SRS, Morcrette M, Sanchez C, Pécastaings G, Derré A, Soum A, Deleuze H, Birot M, Backov R (2009) Hard macrocellular silica Si(HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors. Adv Funct Mater 19:3136

    Google Scholar 

  84. Alvarez S, Esquena J, Solans C, Fuertes AB (2004) Meso/macroporous carbon monoliths from polymeric foams. Adv Eng Mater 6:897

    Google Scholar 

  85. Yang H, Shi Q, Liu X, Xie S, Jiang D, Zhang F, Yu C, Tu B, Zhao D (2002) Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chem Commun 23:2842

    Google Scholar 

  86. Wang X, Bozhilov KN, Feng P (2006) Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem Mater 18:6373–6381

    Google Scholar 

  87. Xia Y, Mokaya R (2007) Ordered mesoporous carbon monoliths: CVD nanocasting and hydrogen storage properties. J Phys Chem C 111:10035–10039

    Google Scholar 

  88. Taguchi A, Smått J-H, Lindén M (2003) Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv Mater 15:1209–1211

    Google Scholar 

  89. Lu A-H, Smått J-H, Lindén M (2005) Combined surface and volume templating of highly porous nanocast carbon monoliths. Adv Func Mater 15:865–871

    Google Scholar 

  90. Lu A-H, Smått J-H, Backlund S, Lindén M (2004) Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Microporous Mesoporous Mater 72:59–65

    Google Scholar 

  91. Shi Z-G, Feng Y-Q, Xu L, Da S-L, Zhang M (2003) Synthesis of a carbon monolith with trimodal pores. Carbon 41:2677–2679

    Google Scholar 

  92. Hu Y-S, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17:1873–1878

    Google Scholar 

  93. Liu N, Yin L, Wang C, Zhang L, Lun N, Xiang D, Qi Y, Gao R (2010) Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. Carbon 48:3579–3591

    Google Scholar 

  94. Han B-H, Zhou W, Sayari A (2003) Direct preparation of nanoporous carbon by nanocasting. J Am Chem Soc 125:3444–3445

    Google Scholar 

  95. Vinu A (2008) Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater 18:816–827

    Google Scholar 

  96. Li Q, Yang J, Feng D, Wu Z, Wu Q, Park SS, Ha CS, Zhao D (2010) Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res 3:632–642

    Google Scholar 

  97. Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498

    Google Scholar 

  98. Pachfule P, Biswal BP, Banerjee R (2012) Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem Eur J 18:11399–11408

    Google Scholar 

  99. Deng H, Jin S, Zhan L, Wang Y, Lu B, Qiao W, Ling L (2012) Synthesis of porous carbons derived from metal-organic coordination polymers and their adsorption performance for carbon dioxide. New Carbon Mater 27:194–199

    Google Scholar 

  100. Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152

    Google Scholar 

  101. Hu M, Reboul J, Furukawa S, Torad NL, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134:2864–2867

    Google Scholar 

  102. Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470

    Google Scholar 

  103. Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu KC-W, Chen L-C, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261

    Google Scholar 

  104. Lim S, Suh K, Kim Y, Yoon M, Park H, Dybtsev DN, Kim K (2012) Porous carbon materials with a controllable surface area synthesized from metal–organic frameworks. Chem Commun 48:7447–7449

    Google Scholar 

  105. Ben T, Li Y, Zhu L, Zhang D, Cao D, Xiang Z, Yao X, Qiu S (2012) Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ Sci 5:8370–8376

    Google Scholar 

  106. Lee KT, Lytle JC, Ergang NS, Oh SM, Stein A (2005) Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv Funct Mater 15:547–556

    Google Scholar 

  107. Adelhelm P, Hu Y-S, Chuenchom L, Antonietti M, Smarsly BM, Maier J (2007) Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates. Adv Mater 19:4012–4017

    Google Scholar 

  108. Gierszal KP, Jaroniec M (2006) Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. J Am Chem Soc 128:10026–10027

    Google Scholar 

  109. Zhang S, Chen L, Zhou S, Zhao D, Wu L (2010) Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chem Mater 22:3433–3440

    Google Scholar 

  110. Fang B, Kim M-S, Kim JH, Lim S, Yu J-S (2010) Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. J Mater Chem 20:10253–10259

    Google Scholar 

  111. Liang Y, Liang F, Wu D, Li Z, Xu F, Fu R (2011) Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. Phys Chem Chem Phys 13:8852–8856

    Google Scholar 

  112. Meng LY, Park SJ (2012) Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon. J Colloid Interface Sci 366:125–129

    Google Scholar 

  113. Bhagiyalakshmi M, Hemalatha P, Ganesh M, Mei PM, Jang HT (2011) A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel 90:1662–1667

    Google Scholar 

  114. Czyèwski A, Kapica J, Moszyǹski D, Pietrzak R, Przepiórski J (2013) On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem Eng J 226:348–356

    Google Scholar 

  115. Meng L-Y, Park S-J (2012) MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation. Mater Chem Phys 137:91–96

    Google Scholar 

  116. Su F, Zhao XS, Wang Y, Lee JY (2007) Bridging mesoporous carbon particles with carbon nanotubes. Microporous Mesoporous Mater 98:323–329

    Google Scholar 

  117. Wang X, Bozhilov KN, Feng P (2006) Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem Mater 18:6373–6381

    Google Scholar 

  118. Huwe H, Froeba M (2007) Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3. Carbon 45:304–314

    Google Scholar 

  119. Wikander K, Hungria AB, Midgley PA, Palmqvist AEC, Holmberg K, Thomas JM (2007) Incorporation of platinum nanoparticles in ordered mesoporous carbon. J Colloid Interface Sci 305:204–208

    Google Scholar 

  120. Jang JH, Han S, Hyeon T, Oh SM (2003) Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources 123:79–85

    Google Scholar 

  121. Kim H, Kim P, Joo JB, Kim W, Song IK, Yi J (2006) Fabrication of a mesoporous Pt-carbon catalyst by the direct templating of mesoporous Pt-alumina for the methanol electro-oxidation. J Power Sources 157:196–200

    Google Scholar 

  122. García-Martínez J, Lancaster TM, Ying JY (2008) Synthesis and catalytic applications of self-assembled carbon nanofoams. Adv Mater 20:288–292

    Google Scholar 

  123. Long D, Chen Q, Qiao W, Zhan L, Liang X, Ling L (2009) Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation. Chem Commun 26:3898–3900

    Google Scholar 

  124. Nielsen TK, Bösenberg U, Gosalawit R, Dornheim M, Cerenius Y, Besenbacher F, Jensen TR (2010) A reversible nanoconfined chemical reaction. ACS Nano 4:3903–3908

    Google Scholar 

  125. Worsley MA, Kuntz JD, Cervantes O, Han TY-J, Gash AE, Satcher JH, Baumann TF (2009) Route to high surface area TiO2/C and TiCN/C composites. J Mater Chem 19:7146–7150

    Google Scholar 

  126. Han TY-J, Worsley MA, Baumann TF, Satcher JH (2011) Synthesis of ZnO coated activated carbon aerogel by simple sol–gel route. J Mater Chem 21:330–333

    Google Scholar 

  127. Worsley MA, Kucheyev SO, Satcher JH, Hamza AV, Baumann TF (2009) Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett 94:073115

    Google Scholar 

  128. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069

    Google Scholar 

  129. Worsley MA, Olson TY, Lee JRI, Willey TM, Nielsen MH, Roberts SK, Pauzauskie PJ, Biener J, Satcher J, Baumann TF (2011) High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett 2:921–925

    Google Scholar 

  130. Jin Y, Hawkins SC, Huynh CP, Su S (2013) Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ Sci 6:2591–2596

    Google Scholar 

  131. Qian D, Lei C, Hao G-P, Li W-C, Lu A-H (2012) Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability. ACS Appl Mater Interfaces 4:6125

    Google Scholar 

  132. Lu A-H, Li W-C, Salabas E-L, Spliethoff B, Schüth F (2006) Low temperature catalytic pyrolysis for the synthesis of high surface area. Nanostruct Graphitic Carbon Chem Mater 18:2086–2094

    Google Scholar 

  133. Liang C, Dai S, Guiochon G (2003) A graphitized-carbon monolithic column. Anal Chem 75:4904–4912

    Google Scholar 

  134. Fulvio PF, Mayes RT, Wang X, Mahurin SM, Bauer JC, Presser V, McDonough J, Gogotsi Y, Dai S (2011) “Brick-and-Mortar” self-assembly approach to graphitic mesoporous carbon nanocomposites. Adv Funct Mater 21:2208–2215

    Google Scholar 

  135. Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H2 and CO2 by graphene. J Phys Chem C 112:15704–15707

    Google Scholar 

  136. Srinivas G, Burress J, Yildirim T (2012) Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy Environ Sci 5:6453–6459

    Google Scholar 

  137. Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4:5477–5482

    Google Scholar 

  138. Zhao Y, Ding H, Zhong Q (2012) Preparation and characterization of aminated graphite oxide for CO2 capture. Appl Surf Sci 258:4301–4307

    Google Scholar 

  139. Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nature Nanotechnol 7:728–732

    Google Scholar 

  140. Carrillo I, Rangel E, Magaňa LF (2009) Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes. Carbon 47:2752–2760

    Google Scholar 

  141. Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSP (2012) Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chem Mater 24:4531–4539

    Google Scholar 

  142. Zhou D, Liu Q, Cheng Q, Zhao Y, Cui Y, Wang T, Han B (2012) Graphene-manganese oxide hybrid porous material and its application in carbon dioxide adsorption. Chin Sci Bull 57:3059–3064

    Google Scholar 

  143. Chandra V, Yu SU, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyyappan M, Kim KS (2012) Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun 48:735–737

    Google Scholar 

  144. Mishra AK, Ramaprabhu S (2012) Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J Mater Chem 22:3708–3712

    Google Scholar 

  145. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  146. Nitze F, Hamad EA, Wågberg T (2011) Well-dispersed Pd3Pt1 alloy nanoparticles in large pore sized mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. Carbon 49:1101–1107

    Google Scholar 

  147. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    Google Scholar 

  148. Yang KS, Edie DD, Lim DY, Kim YM, Choi YO (2003) Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon 41:2039–2046

    Google Scholar 

  149. Kowalczyk P, Furmaniak S, Gauden PA, Terzyk AP (2010) Optimal single-walled carbon nanotube vessels for short-term reversible storage of carbon dioxide at ambient temperatures. J Phys Chem C 114:21465–21473

    Google Scholar 

  150. Mishra AK, Ramaprabhu S (2012) Polyaniline/multiwalled carbon nanotubes nanocomposite—an excellent reversible CO2 capture candidate. RSC Adv 2:1746–1750

    Google Scholar 

  151. Ye Q, Jiang J, Wang C, Liu Y, Pan H, Shi Y (2012) Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels 26:2497–2504

    Google Scholar 

  152. Su F, Lu C, Chen H-S (2011) Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27:8090–8098

    Google Scholar 

  153. Lu C, Bai H, Wu B, Su F, Hwang JF (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22:3050–3056

    Google Scholar 

  154. Dillon EP, Crouse CA, Barron AR (2008) Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes. ACS Nano 2:156–164

    Google Scholar 

  155. Liu H, Cooper VR, Dai S, Jiang D (2012) Windowed carbon nanotubes for efficient CO2 removal from natural gas. J Phys Chem Lett 3:3343–3347

    Google Scholar 

  156. Shen W, Zhang S, He Y, Li J, Fan W (2011) Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. J Mater Chem 21:14036–14040

    Google Scholar 

  157. Asai M, Ohba T, Iwanaga T, Kanoh H, Endo M, Campos-Delgado J, Terrones M, Nakai K, Kaneko K (2011) Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O. J Am Chem Soc 133:14880–14883

    Google Scholar 

  158. Mantzalis D, Asproulis N (2011) Enhanced carbon dioxide adsorption through carbon nanoscrolls. Phys Rev E84:066304

    Google Scholar 

  159. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328:480

    Google Scholar 

  160. Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G (2011) Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7:1108–1117

    Google Scholar 

  161. Presser V, McDonough J, Yeon S-H, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 4:3059–3066

    Google Scholar 

  162. Qian D, Lei C, Wang E-M, Li W-C, Lu A-H (2013) A method for creating microporous carbons with excellent CO2 adsorption capacity and selectivity. ChemSusChem. doi: 10.1002/cssc.201300585

  163. Zhao Y, Zhao L, Yao KX, Yang Y, Zhang Q, Han Y (2012) Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J Mater Chem 22:19726–19731

    Google Scholar 

  164. Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10283–10285

    Google Scholar 

  165. Chen C, Kim J, Ahn W-S (2012) Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel 95:360–364

    Google Scholar 

  166. Zhao Y, Liu X, Yao KX, Zhao L, Han Y (2012) Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem Mater 24:4725–4734

    Google Scholar 

  167. Zhong M, Natesakhawat S, Baltrus JP, Luebke D, Nulwala H, Matyjaszewski K, Kowalewski T (2012) Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. Chem Commun 48:11516–11518

    Google Scholar 

  168. Stohr B, Boehm HP, Schlogl R (1991) Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon 29:707–720

    Google Scholar 

  169. Boehm HP, Mair G, Stoehr T, De Rincon AR, Tereczki B (1984) Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions. Fuel 63:1061–1063

    Google Scholar 

  170. Przepiórski J, Skrodzewicz M, Morawski AW (2004) High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl Surf Sci 225:235–242

    Google Scholar 

  171. Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ (2008) Surface modification of activated carbons for CO2 capture. Appl Surf Sci 254:7165–7172

    Google Scholar 

  172. Plaza MG, Rubiera F, Pis JJ, Pevida C (2010) Ammoxidation of carbon materials for CO2 capture. Appl Surf Sci 256:6843–6849

    Google Scholar 

  173. Angeletti E, Canepa C, Martinetti G, Venturello P (1989) Amino groups immobilized on silica gel: an efficient and reusable heterogeneous catalyst for the Knoevenagel condensation. J Chem Soc 1:105–107

    Google Scholar 

  174. Yue MB, Chun Y, Cao Y, Dong X, Zhu JH (2006) CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16:1717–1722

    Google Scholar 

  175. Zhao L, Bacsik Z, Hedin N, Wei W, Sun Y, Antonietti M, Titirici MM (2010) Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. ChemSusChem 3:840–845

    Google Scholar 

  176. Hwang CC, Jin Z, Lu W, Sun Z, Alemany LB, Lomeda JR, Tour JM (2011) In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration. ACS Appl Mater Interfaces 3:4782–4786

    Google Scholar 

  177. Xia Y, Zhu Y, Tang Y (2012) Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon 50:5543–5553

    Google Scholar 

  178. Liu Y, Wilcox J (2012) Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol 46:1940–1947

    Google Scholar 

  179. Babarao R, Dai S, Jiang D (2012) Nitrogen-doped mesoporous carbon for carbon capture—a molecular simulation study. J Phys Chem C 116:7106–7110

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21225312) and the National Basic Research Program of China (No. 2013CB934104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Hui Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, AH., Hao, GP., Zhang, XQ. (2014). Porous Carbons for Carbon Dioxide Capture. In: Lu, AH., Dai, S. (eds) Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54646-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54646-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54645-7

  • Online ISBN: 978-3-642-54646-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics