Skip to main content

Large Deviations in Monte Carlo Methods

  • Chapter
  • First Online:
Book cover Large Deviations in Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 885))

Abstract

Numerical studies of statistical systems aim at sampling the Boltzmann-Gibbs distribution defined over the system configuration space. In the large-volume limit, the number of configurations becomes large and the distribution very narrow, so that independent-sampling methods do not work and importance sampling is needed. In this case, the dynamic Monte Carlo (MC) method, which only samples the relevant “equilibrium” configurations, is the appropriate tool.

However, in the presence of ergodicity breaking in the thermodynamic limit (for instance, in systems showing phase coexistence) standard MC simulations are not able to sample efficiently the Boltzmann-Gibbs distribution. Similar problems may arise when sampling rare configurations. We discuss here MC methods that are used to overcome these problems and, more generally, to determine thermodynamic/statistical properties that are controlled by rare configurations, which are indeed the subject of the theory of large deviations.

We first discuss the problem of data reweighting, then we introduce a family of methods that rely on non-Boltzmann-Gibbs probability distributions, umbrella sampling, simulated tempering, and multicanonical methods. Finally, we discuss parallel tempering which is a general multipurpose method for the study of multimodal distributions, both for homogeneous and disordered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A precise definition of D β is not necessary for our purposes. For example, we can consider for D β the smallest set of configurations such that \(\sum _{x\in D_{\beta }}\pi _{\beta }(x) > 1-\varepsilon\).

  2. 2.

    It is interesting to observe that, for R = 2, the multiple histogram method is equivalent to Bennett’s acceptance ratio method [14] which was developed for liquid systems.

  3. 3.

    In the case the measures are correlated with an autocorrelation time τ i , then an effective \(\tilde{n}_{i} = n_{i}/(2\tau _{i} + 1)\) should be used in all following formulae.

  4. 4.

    We remind the reader of a few basic facts. If A i are different estimates of the same quantity, i.e., they all satisfy \(\langle A_{i}\rangle = a\), any weighted average \(A_{\mathrm{wt}} =\sum w_{i}A_{i}\), \(\sum _{i}w_{i} = 1\), is correct in the sense that \(\langle A_{\mathrm{wt}}\rangle = a\). Usually, one takes w i  =  i −2 (k is the normalization factor) because this gives the optimal estimator, that is the one with the least error. Here, however, robustness and not optimality is the main issue.

  5. 5.

    If the inverse temperatures β i are ordered, one could determine Z i Z i−1 by using the reweighting method and then \(\hat{Z}_{i} = (Z_{i}/Z_{i-1})(Z_{i-1}/Z_{i-2})\ldots Z_{2}/Z_{1}\).

  6. 6.

    There are instances of second-order transitions which show bimodal distributions in finite volume [23, 24]: however, in these cases the two peaks get closer and the gap decreases as the volume increases. ST should work efficiently in these instances. Note, however, that the algorithm may not work in some disordered systems, even if the transition is of second order. One example is the random field Ising model.

  7. 7.

    In principle the swapping can be attempted among any pair of replicas, but only for nearby replicas the swap has a reasonable probability of being accepted.

  8. 8.

    If the PT method is applied to a system undergoing a first-order transition, the swapping procedure would be highly inefficient, because HT replicas would hardly swap with LT replicas. The two sets of replicas would remain practically non-interacting.

  9. 9.

    The condition of unimodality is not required in the proofs of the theorems. However, the theorems have physically interesting consequences only if a unimodal decomposition is possible.

References

  1. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  2. M.N. Rosenbluth, A.W. Rosenbluth, J. Chem. Phys. 22, 881 (1954)

    Article  ADS  Google Scholar 

  3. B.J. Alder, S.P. Frankel, V.A. Lewinson, J. Chem. Phys. 23, 417 (1955)

    Article  ADS  Google Scholar 

  4. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)

    Article  ADS  Google Scholar 

  5. S.R.S. Varadhan, Ann. Prob. 36, 397 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988); Erratum ibid. 63, 1658 (1989)

    Google Scholar 

  7. R.H. Swendsen, A.M. Ferrenberg, in Computer Studies in Condensed Matter Physics II, ed. by D.P. Landau, K.K. Mon, H.B. Schüttler (Springer, Berlin, 1990), pp. 179–183

    Google Scholar 

  8. A.M. Ferrenberg, D.P. Landau, R.H. Swendsen, Phys. Rev. E 51, 5092 (1995)

    Article  ADS  Google Scholar 

  9. B. Efron, Ann. Stat. 7, 1 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Efron, Biometrika 68, 589 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  13. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989)

    Article  ADS  Google Scholar 

  14. C.H. Bennett, J. Comp. Phys. 22, 245 (1976)

    Article  ADS  Google Scholar 

  15. G.M. Torrie, J.P. Valleau, J. Comp. Phys. 23, 187 (1977)

    Article  ADS  Google Scholar 

  16. A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1991)

    Article  ADS  Google Scholar 

  17. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992)

    Article  ADS  Google Scholar 

  18. N. Madras, M. Piccioni, Ann. Appl. Prob. 9, 1202 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  20. R.G. Edwards, A.D. Sokal, Phys. Rev. D 38, 2009 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. W.K. Hastings, Biometrika 57, 97 (1970)

    Article  MATH  Google Scholar 

  22. N. Bhatnagar, D. Randall, in Proceeding of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans (ACM, New York, 2004), pp. 478–487

    Google Scholar 

  23. M. Fukugita, H. Mino, M. Okawa, A. Ukawa, J. Phys. A 23, L561 (1990)

    Article  ADS  Google Scholar 

  24. J.F. McCarthy, Phys. Rev. B 41, 9530 (1990)

    Article  ADS  Google Scholar 

  25. B. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)

    Article  ADS  Google Scholar 

  26. B. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)

    Article  ADS  Google Scholar 

  27. C.J. Geyer, in Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, ed. by E.M. Keramidas, S.M. Kaufman (American Statistical Association, New York, 1991), pp. 156–163

    Google Scholar 

  28. M.C. Tesi, E.J. Janse van Rensburg, E. Orlandini, S.G. Whittington, J. Stat. Phys. 82, 155 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996)

    Article  ADS  Google Scholar 

  30. U.H.E. Hansmann, Chem. Phys. Lett. 281, 140 (1997)

    Article  ADS  Google Scholar 

  31. D.J. Earl, M.W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005)

    Article  Google Scholar 

  32. N. Madras, Z. Zheng, Random Struct. Alg. 22, 66 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Z. Zheng, Stoch. Proc. Appl. 104, 131 (2003)

    Article  MATH  Google Scholar 

  34. D.B. Woodard, S.C. Schmidler, M. Huber, Ann. Appl. Prob. 19, 617 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. N. Madras, D. Randall, Ann. Appl. Prob. 12, 581 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Martinelli, E. Olivieri, R. Schonmann, Comm. Math. Phys. 165, 33 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. D.A. Kofke, J. Chem. Phys. 117, 6911 (2002)

    Article  ADS  Google Scholar 

  38. A. Kone, D.A. Kofke, J. Chem. Phys. 122, 206101 (2005)

    Article  ADS  Google Scholar 

  39. C. Predescu, M. Predescu, C.V. Ciobanu, J. Chem. Phys. 120, 4119 (2004)

    Article  ADS  Google Scholar 

  40. D. Sabo, M. Meuwly, D.L. Freeman, J.D. Doll, J. Chem. Phys. 128, 174109 (2008)

    Article  ADS  Google Scholar 

  41. H.G. Katzgraber, S. Trebst, D.A. Huse, M. Troyer, J. Stat. Mech. P03018 (2006)

    Google Scholar 

  42. E. Bittner, A. Nußbaumer, W. Janke, Phys. Rev. Lett. 101, 130603 (2008)

    Article  ADS  Google Scholar 

  43. R. Alvarez Baños et al. (Janus collaboration), J. Stat. Mech. P06026 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Ricci-Tersenghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelissetto, A., Ricci-Tersenghi, F. (2014). Large Deviations in Monte Carlo Methods. In: Vulpiani, A., Cecconi, F., Cencini, M., Puglisi, A., Vergni, D. (eds) Large Deviations in Physics. Lecture Notes in Physics, vol 885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54251-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54251-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54250-3

  • Online ISBN: 978-3-642-54251-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics