Skip to main content

Use of XML Schema Definition for the Development of Semantically Interoperable Healthcare Applications

  • Conference paper
Book cover Foundations of Health Information Engineering and Systems (FHIES 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8315))

Abstract

Multilevel modeling has been proven in software as a viable solution for semantic interoperability, without imposing any specific programming languages or persistence models. The Multilevel Healthcare Information Modeling (MLHIM) specifications have adopted the XML Schema Definition 1.1 as the basis for its reference implementation, since XML technologies are consistent across all platforms and operating systems, with tools available for all mainstream programming languages. In MLHIM, the healthcare knowledge representation is defined by the Domain Model, expressed as Concept Constraint Definitions (CCDs), which provide the semantic interpretation of the objects persisted according to the generic Reference Model classes. This paper reports the implementation of the MLHIM Reference Model in XML Schema Definition language version 1.1 as well as a set of examples of CCDs generated from the National Cancer Institute – Common Data Elements (NCI CDE) repository. The set of CCDs was the base for the simulation of semantically coherent data instances, according to independent XML validators, persisted on an eXistDB database. This paper shows the feasibility of adopting XML technologies for the achievement of semantic interoperability in real healthcare scenarios, by providing application developers with a significant amount of industry experience and a wide array of tools through XML technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACMI, electronic medical records, http://www.youtube.com/watch?v=t-aiKlIc6uk (last accessed: April 1, 2013)

  2. De Leon, S., Connelly-Flores, A., Mostashari, F., Shih, S.C.: The business end of health information technology. Can a fully integrated electronic health record increase provider productivity in a large community practice? J. Med. Pract. Manage 25, 342–349 (2010)

    Google Scholar 

  3. Javitt, J.C.: How to succeed in health information technology. Health Aff. (Millwood) (2004); Suppl. Web Exclusives:W4-321-4

    Google Scholar 

  4. U.S. National Library of Medicine. 2011AA SNOMED CT Source Information, http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/SNOMEDCT (last accessed: April 28, 2013)

  5. Maojo, V., Kulikowski, C.: Medical informatics and bioinformatics: integration or evolution through scientific crises? Methods Inf. Med. 45, 474–482 (2006)

    Google Scholar 

  6. Fitzmaurice, J.M., Adams, K., Eisenberg, J.: Three decades of research on computer applications in health care: medical informatics support at the Agency for Healthcare Research and Quality. J. Am. Med. Inform. Assoc. 9, 144–160 (2002)

    Article  Google Scholar 

  7. Preker, A., Harding, A.: The economics of hospital reform from hierarchical to market-based incentives. World Hosp. Health Serv. 39, 3–10 (2003)

    Google Scholar 

  8. Harris, N.M., Thorpe, R., Dickinson, H., Rorison, F., Barrett, C., Williams, C.: Hospital and after: experience of patients and carers in rural and remote North Queensland, Australia. Rural Remote Health 4, 246 (2004)

    Google Scholar 

  9. Zusman, E.: Form facilitates function: innovations in architecture and design drive quality and efficiency in healthcare. Neurosurgery 66, N24 (2010)

    Article  Google Scholar 

  10. Ward, M.M., Vartak, S., Schwichtenberg, T., Wakefield, D.: Nurses’ perceptions of how clinical information system implementation affects workflow and patient care. Comput. Inform. Nurs. 29, 502–511 (2011)

    Article  Google Scholar 

  11. Jung, M., Choi, M.: A mechanism of institutional isomorphism in referral networks among hospitals in Seoul, South Korea. Health Care Manag (Frederick) 29, 133–146 (2010)

    Google Scholar 

  12. Hoangmai, H.P., O’Malley, A.S., Bach, P.B., Saiontz-Martinez, C., Schrag, D.: Primary care physicians’ links to other physicians through medicare patients: the scope of care coordination. Ann. Intern. Med. 150, 236–242 (2009)

    Article  Google Scholar 

  13. Sittig, D.F., Singh, H.: A new sociotechnical model for studying health information technology in complex adaptive healthcare systems. QualSaf Health Care (suppl. 3), i68–i74 (2010)

    Google Scholar 

  14. Hyman, W.: When medical devices talk to each other: the promise and challenges of interoperability. Biomed. Instrum. Technol. (suppl.), 28–31 (2010)

    Google Scholar 

  15. Charters, K.: Home telehealth electronic health information lessons learned. Stud. Health Technol. Inform. 146, 719 (2009)

    Google Scholar 

  16. Raths, D.: Shifting away from silos. The interoperability challenges that hospitals face pale in comparison to the headaches plaguing State Departments. Healthc Inform. 27, 32–33 (2010)

    Google Scholar 

  17. Achimugu, P., Soriyan, A., Oluwagbemi, O., Ajayi, A.: Record linkage system in a complex relational database: MINPHIS example. Stud. Health Technol. Inform. 160, 1127–1130 (2010)

    Google Scholar 

  18. Metaxiotis, K., Ptochos, D., Psarras, J.: E-health in the new millennium: a research and practice agenda. Int. J. Electron. Healthc 1, 165–175 (2004)

    Article  Google Scholar 

  19. Hufnagel, S.P.: Interoperability. Mil. Med. 174, 43–50 (2009)

    Google Scholar 

  20. Kadry, B., Sanderson, I.C., Macario, A.: Challenges that limit meaningful use of health information technology. Curr. Opin. Anaesthesiol. 23, 184–192 (2010)

    Article  Google Scholar 

  21. Blobel, B., Pharow, P.: Analysis and evaluation of EHR approaches. Stud. Health Technol. Inform. 136, 359–364 (2008)

    Google Scholar 

  22. Rodrigues, J.M., Kumar, A., Bousquet, C., Trombert, B.: Using the CEN/ISO standard for categorial structure to harmonise the development of WHO international terminologies. Stud. Health Technol. Inform. 159, 255–259 (2009)

    Google Scholar 

  23. Blobel, B.: Ontologies, knowledge representation, artificial intelligence: hype or prerequisites for international pHealth interoperability? Stud. Health Technol. Inform. 165, 11–20 (2011)

    Google Scholar 

  24. National Health Service Media Centre. Dismantling the NHS national programme for IT, http://mediacentre.dh.gov.uk/2011/09/22/dismantling-the-nhs-national-programme-for-it (last accessed: May 15, 2013)

  25. Lohrs, S.: Google to end health records service after it fails to attract users. The New York Times (June 24, 2011), http://www.nytimes.com/2011/06/25/technology/25health.html?_r=3&. (last accessed: April 28, 2013)

  26. Kalra, D., Beale, T., Heard, S.: The open EHR Foundation. Stud. Health Technol. Inform. 115, 153–173 (2005)

    Google Scholar 

  27. Martinez-Costa, C., Menarguez-Tortosa, M., Fernandez-Breis, J.T.: Towards ISO 13606 and open EHR archetype-based semantic interoperability. Stud. Health Technol. Inform. 150, 260–264 (2009)

    Google Scholar 

  28. Cavalini, L.T., Cook, T.W.: Health informatics: The relevance of open source and multilevel modeling. In: Hissam, S.A., Russo, B., de Mendonça Neto, M.G., Kon, F. (eds.) OSS 2011. IFIP AICT, vol. 365, pp. 338–347. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Dias, R.D., Cook, T.W., Freire, S.: Modeling healthcare authorization and claim submissions using the openEHR dual-model approach. BMC Med. Inform. Decis. Mak. 11, 60 (2011)

    Article  Google Scholar 

  30. Kashfi, H., Torgersson, O.: A migration to an open EHR-based clinical application. Stud. Health Technol. Inform. 150, 152–156 (2009)

    Google Scholar 

  31. Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., Laleci, G.: A survey and analysis of electronic healthcare record standards. ACM Comput. Surv. 37, 277–315 (2005)

    Article  Google Scholar 

  32. Yu, S., Berry, D., Bisbal, J.: Clinical coverage of an archetype repository over SNOMED-CT. J. Biomed. Inform. 45, 408–418 (2012)

    Article  Google Scholar 

  33. Menezes, A.L., Cirilo, C.E., Moraes, J.L.C., Souza, W.L., Prado, A.: Using archetypes and domain specific languages on development of ubiquitous applications to pervasive healthcare. In: Proc. IEEE 23rd Int. Symp. Comput. Bas. Med. Syst., pp. 395–400 (2010)

    Google Scholar 

  34. Cavalini, L.T., Cook, T.: Knowledge engineering of healthcare applications based on minimalist multilevel models. In: IEEE 14th Int. Conf. e-Health Networ. Appl. Serv., pp. 431–434 (2012)

    Google Scholar 

  35. Sanderson, D.: Loss of data semantics in syntax directed translation. PhD Thesis in Computer Sciences. Renesselaer Polytechnic Institute, New York (1994)

    Google Scholar 

  36. Cook, T.W., Cavalini, L.: Implementing a specification for exceptional data in multilevel modeling of healthcare applications. ACM Sighit Rec. 2, 11 (2012)

    Article  Google Scholar 

  37. Lee, T., Hon, C.T., Cheung, D.X.: Schema design and management for e-government data interoperability. Electr. Je.-Gov., 381–391 (2009)

    Google Scholar 

  38. Daconta, M.C., Obrst, L.J., Smith, K.T.: The Semantic Web. Wiley, Indianapolis (2003)

    Google Scholar 

  39. Rutle, A., MacCaull, W., Wang, H.: A metamodelling approach to behaviouralmodeling. In: Proc. 4th Worksh. Behav. Mod. Foundat. Appl., vol. 5 (2012)

    Google Scholar 

  40. Seligman, L., Roenthal, A.: XML’s impact on databases and data sharing. Computer, 59–67 (2001)

    Google Scholar 

  41. Fenton, S., Giannangelo, K., Kallem, C., Scichilone, R.: Data standards, data quality, and interoperability. J. Ahima (2007); extended online edition

    Google Scholar 

  42. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology Language Primer, 2 edn., http://www.w3.org/TR/owl2-primer/#Modeling_Knowledge:_Basic_Notions (last accessed: October 17, 2013)

  43. Manola, F., Miller, E.: RDF Primer, http://www.w3.org/TR/rdf-primer/#dublincore (last accessed: October 17, 2013)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cavalini, L.T., Cook, T.W. (2014). Use of XML Schema Definition for the Development of Semantically Interoperable Healthcare Applications. In: Gibbons, J., MacCaull, W. (eds) Foundations of Health Information Engineering and Systems. FHIES 2013. Lecture Notes in Computer Science, vol 8315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53956-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53956-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53955-8

  • Online ISBN: 978-3-642-53956-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics