Skip to main content

Methods in Trauma Biomechanics

  • Chapter
  • First Online:
Trauma Biomechanics

Abstract

Work in trauma biomechanics is subjected to a number of limitations which are less stringent or even totally absent in other fields of the technical and life sciences. First of all, experiments involving loading situations with humans which are prone to cause injury are excluded. Second, animal models are of limited use because of the difficulty to scale trauma events reliably from animals up or down to humans. Questionable representativeness with respect to human biomechanics in spite of some similarity, furthermore, cost and above all ethical considerations along with public awareness limit however such experiments to special circumstances today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAAM (2005) AIS 2005: The injury scale. In: Gennarelli T, Wodzin E (eds.) Association of advancement of automotive medicine

    Google Scholar 

  • Appel H, Krabbel G, Vetter D (2002) Unfallforschung, Unfallmechanik und Unfallrekonstruktion. Verlag Information Ambs GmbH, Kippenheim

    Book  Google Scholar 

  • Baker S, O’Neill B (1976) The injury severity score: an update. J Trauma 11:882–885

    Article  Google Scholar 

  • Bathe K (2007) Finite element procedures. Prentice-Hall India, ISBN 978-8120310759

    Google Scholar 

  • Beason D, Dakin G, Lopez R, Alonso J, Bandak F, Eberhardt A (2003) Bone mineral density correlates with fracture load in experimental side impacts of the pelvis. J Biomech 36:219–227

    Article  Google Scholar 

  • Campbell F, Woodford M, Yates D (1994) A comparion of injury impairment scale scores and physician’s estimates of impairment following injury to the head, abdomen and lower limbs. In: Proceedings of the 38th AAAM conference

    Google Scholar 

  • Carlsson A, Chang F, Lemmen P, Kullgren A, Schmitt K-U, Linder A, Svensson M (2012) EvaRID—A 50th percentile female rear impact finite element dummy model. In: Proceedings of IRCOBI conference, paper no. IRC-12-32, pp. 249–262

    Google Scholar 

  • Carsten O, Day J (1988) Injury priority analysis. NHTSA Technical Report DOT HS 807 224

    Google Scholar 

  • Chawla M, Hildebrand F, Pape H, Giannoudis P (2004) Predicting outcome after multiple trauma: which scoring system? Injury 35:347–358

    Article  Google Scholar 

  • Compton C (2002) The use of public crash data in biomechanical research. In: Nahum Melvin (ed) Accidental injury - biomechanics and prevention. Springer, New York

    Google Scholar 

  • Damm R, Schnottale B, Lorenz B (2006) Evaluation of the biofidelity of the WorldSID and the ES-2 on the basis of PMHS data. Proceedings of IRCOBI Conference, pp. 225–237

    Google Scholar 

  • Gesac (2013) http://www.gesacinc.com/, accessed Oct. 12 2013

  • Gutsche A, Tomasch E, Sinz W, Levallois I, Alonso S, Lemmen P, Linder A, Steffan H (2013) Improve assessment and enhance safety for the evaluation of Whiplash protection systems addressing male and female occupants in different seat configurations by introducing virtual methods in consumer tests. In: Proceedings of IRCOBI Conference, paper no. IRC-13-16, pp. 77–90

    Google Scholar 

  • Holzapfel G, Ogden R (2006) Mechanics of biological tissues. Springer Publications, Berlin. ISBN 978-3-540-25194-1

    Book  Google Scholar 

  • Humanetics (2013) http://www.humaneticsatd.com/, accessed Oct 12 2013

  • Iwamoto M, Kisanuki Y, Watanabe I, Furusu K, Miki K, Hasegawa J (2002) Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction. Proceedings of IRCOBI Conference, pp. 31–42

    Google Scholar 

  • Linder A, Schick S, Hell W, Svensson M, Carlsson A, Lemmen P, Schmitt KU, Gutsche A, Tomasch E (2013) ADSEAT - Adaptive seat to reduce neck injuries for female and male occupants. Accid Anal Prev, doi:pii: S0001-4575(13)00100-0. 10.1016/j.aap.2013.02.043

  • Liu IS (2002) Continuum mechanics. Springer Publications, Berlin. ISBN 978-3-540-43019-3

    Book  MATH  Google Scholar 

  • Malliaris A (1985) Harm causation and ranking in car crashes, SAE 85090

    Google Scholar 

  • Mertz HJ, Irwin AL, Prasad P (2003) Biomechanical and scaling bases for frontal and side impact Injury assessment reference values. Stapp Car Crash J 47:155–188

    Google Scholar 

  • Muser M, Zellmer H, Walz F, Hell W, Langwieder K (1999) Test procedure for the evaluation of the injury risk to the cervical spine in a low speed rear end impact. Proposal for the ISO/TC22 N 2071/ISO/TC22/SC10 (collison test procedures), Report

    Google Scholar 

  • Niederer P (2010) Mathematical foundations of biomechanics. Crit Rev Biomed Eng 38(6):355–577

    Article  Google Scholar 

  • Ono K, Kaneoka K (1997) Motion analysis of human cervical vertebrae during low speed rear impacts by the simulated sled. In: Proceedings of IRCOBI Conference, pp. 223–237

    Google Scholar 

  • Schmitt K-U, Muser M, Walz F, Niederer P (2002) On the role of fluid-structure interaction in the biomechanics of soft tissue neck injuries. Traffic Inj Prev 3(1):65–73

    Article  Google Scholar 

  • Schmitt K-U, Muser M, Vetter D, Walz F (2003) Whiplash injuries: cases with a long period of sick leave need biomechanical assessment. European Spine 12(3):247–254

    Google Scholar 

  • Schmitt K-U, Beyeler F, Muser M, Niederer P (2004) A visco-elastic foam as head restraint material - experiments and numerical simulations using a BioRID model. Traffic Inj Prev 9(4):341–348

    Google Scholar 

  • Spitzer W, Skovron M, Salmi L, Cassiy J, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the quebec task force on whiplash associated disorders: redefining “whiplash” and its management. Spine 20(8S):3–73

    Google Scholar 

  • Stitzel J, Cormier J, Barretta J, Kennedy E, Smith E, Rath A, Duma S, Matsuoka F (2003) Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction. Stapp Car Crash J 47:243–265

    Google Scholar 

  • Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness - a practical scale. Lancet 2:81–84

    Article  Google Scholar 

  • Zeidler F, Pletschen B, Mattern R, Alt B, Miksch T, Eichendorf W, Reiss S (1989) Development of a new injury cost scale. In: Proceedings of 33rd Annual Conference AAAM

    Google Scholar 

  • Zienkiewicz O, Taylor R (1994) The finite element method. McGraw-Hill Book Company, London. ISBN 0-07-084175-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Uwe Schmitt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, KU., Niederer, P.F., Cronin, D.S., Muser, M.H., Walz, F. (2014). Methods in Trauma Biomechanics. In: Trauma Biomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53920-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53920-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53919-0

  • Online ISBN: 978-3-642-53920-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics