Skip to main content

The Morphometric Synthesis: A Brief Intellectual History

  • Conference paper

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 100))

Abstract

For most of the twentieth century, techniques for the biometric analysis of organic form fell into one of two incompatible styles. In the first, more indigenous style, a direct extension of techniques introduced into statistics by Galton, Pearson, and their heirs, conventional multivariate techniques were applied to a diverse roster of measures of single forms. The only algebraic structures involved were those of multivariate statistics, limited mainly to covariance matrices; no aspect of the geometric organization of the measures, or their biological rationale, was reflected in the method. Analyses of this mode led at best to path diagrams, not to sketches of typical organisms expressing the developmental or functional import of the coefficients computed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackith, R. Morphometrics. Pp. 225–249 in T. H. Waterman and H. J. Morowitz, eds., Theoretical and Mathematical Biology. New York: Blaisdell, 1965.

    Google Scholar 

  • Blackith, R., and R. Reyment. Multivariate Morphometries. New York: Academic Press, 1971.

    Google Scholar 

  • Bookstein, F. L. The Measurement of Biological Shape and Shape Change. Lecture Notes in Biomathematics, v. 24. New York: Springer-Verlag, 1978.

    Book  MATH  Google Scholar 

  • Bookstein, F. L. On the cephalometrics of skeletal change. American Journal of Orthodontics 82:177–198, 1982a.

    Article  Google Scholar 

  • Bookstein, F. L. Foundations of morphometries. Annual Reviews of Ecology and Systematics 13:451–470, 19826.

    Google Scholar 

  • Bookstein, F. L. A statistical method for biological shape comparisons. Journal of Theoretical Biology 107:475–520, 1984a.

    Article  Google Scholar 

  • Bookstein, F. L. Tensor biometrics for changes in cranial shape. Annals of Human Biology 11:413–437, 19846.

    Google Scholar 

  • Bookstein, F. L. Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181–242, 1986.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11:567–585, 1989a.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. “Size and shape”: a comment on semantics. Systematic Zoology 38:173–180, 1989b.

    Article  Google Scholar 

  • Bookstein, F. L. Morphometric Tools for Landmark Data. New York: Cambridge University Press, 1991.

    MATH  Google Scholar 

  • Bookstein, F. L., B. Chernoff, R. Elder, J. Humphries, G. Smith, and R. Strauss. Morphometries in Evolutionary Biology. Philadelphia: Academy of Natural Sciences of Philadelphia, 1985.

    Google Scholar 

  • Bookstein, F. L., and W. D. K. Green. A feature space for edgels in images with landmarks. Journal of Mathematical Imaging and Vision 3: 231–261, 1993.

    Article  MATH  Google Scholar 

  • Boyd, E. Origins of the Study of Human Growth. University of Oregon Health Sciences Center, 1980.

    Google Scholar 

  • Burnaby, T. P. Growth-invariant discriminant functions and generalized distances. Biometrics 22:96–110, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  • Corruccini, R. S. Analytical techniques for Cartesian coordinate data with reference to the relationships between Hylobates and Symphalangus. Systematic Zoology 30:32–40, 1981.

    Article  Google Scholar 

  • Duncan, O. D. Notes on Social Measurement: Historical and Critical. New York: Russell Sage Foundation, 1984.

    Google Scholar 

  • Dürer, A. Vier Bücher von Menschlicher Proportion. Somewhere in Northern Europe, 1528.

    Google Scholar 

  • Goodall, C. R. The statistical analysis of growth in two dimensions. Doctoral dissertation, Department of Statistics, Harvard University, 1983.

    Google Scholar 

  • Goodall, C. R. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society B53:285–339, 1991.

    MathSciNet  Google Scholar 

  • Goodall, C. R., and K. Mardia. A geometric derivation of the shape density. Advances in Applied Probability 23:496–514, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  • Hopkins, J. W. Some considerations in multivariate allometry. Biometrics 22:747–760, 1966.

    Article  Google Scholar 

  • Hotelling, H. Relations between two sets of variables. Biometrika 28:321–377, 1936.

    MATH  Google Scholar 

  • Humphries, J. M., F. Bookstein, B. Chernoff, G. Smith, R. Elder, and S. Poss. Multivariate discrimination by shape in relation to size. Systematic Zoology 30:291–308, 1981.

    Article  Google Scholar 

  • Huxley, J. Principles of Relative Growth. London: Methuen, 1932.

    Google Scholar 

  • Jolicoeur, P. The multivariate generalization of the allometry equation. Biometrics 19:497–499, 1963.

    Article  Google Scholar 

  • Kendall, D. G. Shape-manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16:81–121, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn, T. S. The function of measurement in modern physical science. Pp. 31–63 in H. Woolf, ed., Quantification. Indianapolis: Bobbs-Merrill, 1959.

    Google Scholar 

  • Latour, B. Science in Action. Cambridge: Harvard University Press, 1987.

    Google Scholar 

  • Lewis, J. L., W. Lew, and J. Zimmerman. A nonhomogeneous anthropometric scaling method based on finite element principles. Journal of Biomechanics 13:815–824, 1980.

    Article  Google Scholar 

  • Lohmann, G. P. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Mathematical Geology 15:659–672, 1983.

    Article  Google Scholar 

  • Mackenzie, D. A. Statistics in Britain, 1865–1930: The Social Construction of Scientific Knowledge. Edinburgh: Edinburgh University Press, 1981.

    Google Scholar 

  • Mardia, K. V., and I. Dryden. The statistical analysis of shape data. Biometrika 76:271–282, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  • Mosimann, J. E. Size allometry: size and shape variables with characterizations of the log-normal and generalized gamma distributions. Journal of the American Statistical Association 65:930–945, 1970.

    MATH  Google Scholar 

  • Oxnard, C. E. Form and Pattern in Human Evolution. Chicago: University of Chicago Press, 1973.

    Google Scholar 

  • Oxnard, C. E. One biologist’s view of morphometrics. Annual Reviews of Ecology and Systematics 9:219–241, 1978.

    Article  Google Scholar 

  • Reyment, R. A. Multivariate Paleobiology. Oxford: Pergamon, 1991.

    Google Scholar 

  • Richards, O. W., and A. C. Kavanagh. The analysis of relative growth-gradients and changing form of growing organisms: illustrated by the tobacco leaf. American Naturalist 77:385–399, 1943.

    Article  Google Scholar 

  • Rohlf, F. J. The relationships among eigenshape analysis, Fourier analysis, and the analysis of coordinates. Mathematical Geology 18:845–854, 1986.

    Article  Google Scholar 

  • Rohlf, F. J. Relative warp analysis and an example of its application to mosquito wings. Pp. 131–159 in L. F. Marcus, E. Bello, and A. G. Valdecasas, eds., Contributions to Morphometrics., Madrid: Museo Nacional de Ciencias Naturales, 1993.

    Google Scholar 

  • Rohlf, F. J., and F. Bookstein, eds. Proceedings of the Michigan Morphometries Workshop. Ann Arbor: University of Michigan Museums, 1990.

    Google Scholar 

  • Sampson, P. D., F. Bookstein, S. Lewis, C. Hurley, and P. Guttorp. Computation and application of deformations for landmark data in morphometries and environmetrics. Pp. 534–541 in E. Keramidas, ed., Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. Fairfax Station, VA: Interface Foundation of North America, Inc., 1991.

    Google Scholar 

  • Sneath, P. H. A., and R. R. Sokal. Principles of Numerical Taxonomy. San Francisco: W. H. Freeman, 1963.

    Google Scholar 

  • Sneath, P. H. A. Trend-surface analysis of transformation grids. Journal of Zoology 151:65–122, 1967.

    Article  Google Scholar 

  • Thompson, D. A. W. On Growth and Form. London: Macmillan, 1917.

    Google Scholar 

  • Wright, S. Evolution and the Genetics of Populations. Vol. 1: Genetic and Biometrie Foundations. Chicago: University of Chicago Press, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bookstein, F.L. (1994). The Morphometric Synthesis: A Brief Intellectual History. In: Levin, S.A. (eds) Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50124-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50124-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50126-5

  • Online ISBN: 978-3-642-50124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics