Skip to main content

Molecular Genetics of Childhood Papillary Thyroid Carcinomas After Irradiation: High Prevalence of RET Rearrangement

  • Conference paper
Book cover Genes and Environment in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 154))

Abstract

Epidemiological studies have revealed a connection between thyroid carcinogenesis and a history of radiation. The molecular mechanisms involed are not well understood. It has been claimed that RAS, p53 or GSP mutations and RET or TRK rearrangements might play a role in adult thyroid tumors. In childhood, the thyroid gland is particularly sensitive to ionizing radiation. The reactor accident in Chernobyl provided a unique chance to study molecular genetic aberrations in a cohort of children who developed papillary thyroid carcinomas after a short latency time after exposure to high doses of radioactive iodine isotopes. According to the concepts of molecular genetic epidemiology, exposure to a specific type of irradiation might result in a typical molecular lesion. Childhood papillary thyroid tumors after Chernobyl exhibit a high prevalence of RET rearrangement as almost the only molecular alteration. The majority showed RET/PTC3 (i.e., ELE/RET rearrangements), including several subtypes. Less frequently, RET/PTC1 (i.e., H4/RET rearrangements), and a novel type (RET/PTC5, i.e., RFG5/RET) were observed. Proof of reciprocal transcripts suggests that a balanced intrachromosomal inversion leads to this rearrangement. Breakpoint analyses revealed short homologous nucleotide stretches at the fusion points. In all types of rearrangement, the RET tyrosine kinase domain becomes controlled by 5’ fused regulatory sequences of ubiquitously expressed genes that display coiled-coil regions with dimerization potential. Oncogenic activation of RET is apparently due to ligand-independent constitutive ectopic RET tyrosine kinase activity. The analysis of this cohort of children with radiation-induced thyroid tumors after Chernobyl provides insights into typical molecular aberrations in relation to a specific mode of environmental exposure and may serve as a paradigm for molecular genetic epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avantaggiato V, Dathan NA et al (1994) Developmental expression of the RET protooncogene. Cell Growth Diff 5: 305–311

    PubMed  CAS  Google Scholar 

  • Balonov M, Jacob P et al (1996) Pathways, levels and trends of population exposure after the Chernobyl accident. In: Karaoglou A, Desmet G, Kelly GN et al (eds) The radiological consequences of the Chernobyl accident. EUR 16544 EN, Brussels, pp 235–249

    Google Scholar 

  • Bartsch H, Hol’stein M et al (1995) Screening for putative radon-specific p53 mutation hot-spot in German uranium miners. Lancet 346: 121

    Article  PubMed  CAS  Google Scholar 

  • Baverstock K, Egloff B et al (1992) Thyroid cancer after Chernobyl. Nature 359: 22

    Article  Google Scholar 

  • Bhatia K, Gutiérrez MI et al (1992) PCR detection of a neutral CGA/CGG dimorphism in exon 6 of the human p53 gene. Nucleic Acids Res 220: 928

    Article  Google Scholar 

  • Bongarzone I, Monzini N et al (1993) Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RIa of cyclic AMP-dependent protein kinase A. Mol Cell Biol 13: 358–366

    PubMed  CAS  Google Scholar 

  • Bongarzone I, Butti MG et al (1994) Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 54: 2979–2985

    PubMed  CAS  Google Scholar 

  • Bongarzone I, Fugazzola L et al (1996) Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metabol 81: 2006–2009

    Article  CAS  Google Scholar 

  • Bongarzone I, Butti MG et al (1997) Comparison of the breakpoint regions of ELE1 and RET genes involved in the generation of RET/PTC3 oncogene in sporadic and in radiation-associated papillary thyroid carcinomas. Genomics 42: 252–259

    Article  PubMed  CAS  Google Scholar 

  • Bounacer A, Wicker R et al (1997) High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15: 1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Bressac B, Kew M et al (1991) Selective G to T mutations of p53 gene in hepato-cellular carcinoma from southern Africa. Nature 350: 429–431

    Article  PubMed  CAS  Google Scholar 

  • Demidchik EP, Drobyshevskaya IM et al (1996) Thyroid cancer in children in Belarus. In: Karaoglou A, Desmet G et al (eds) The radiological consequences of the Chernobyl accident. EUR 16544 EN, Brussels, pp 677–678

    Google Scholar 

  • Dobashi Y, Sugimura H et al (1994) Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol 3: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Durbec P, Marcos-Guierrez CV et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381: 789–793

    Article  PubMed  CAS  Google Scholar 

  • Fagin JA, Matsuo K et al (1993) High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 91: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Favus MJ, Schneider AB et al (1976) Thyroid cancer occurring as a late consequence of head-and-neck irradiation. N Engl J Med 294: 1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Fugazzola L, Pilotti S et al (1995) Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 55: 5617–5620

    PubMed  CAS  Google Scholar 

  • Fugazzola L, Pierotti MA (1996) Molecular and biochemical analysis of RET/PTC4, a novel oncogenic rearrangement between RET and ELE1 genes, in a post-Chernobyl papillary thyroid cancer. Oncogene 13: 1093–1097

    PubMed  CAS  Google Scholar 

  • Furmanchuk AW, Averkin JI et al (1992) Pathomorphological findings in thyroid cancers of children from the Republic of Belarus: a study of 86 cases occurring between 1986 (’post-Chernobyl’) and 1991. Histopathology 21: 401–408

    Article  PubMed  CAS  Google Scholar 

  • Goretzki P, Lyons J et al (1992) Mutational activation of ras and gsp oncogenes in differentiated thyroid cancer and their biological implication. World J Surg 16: 576–582

    Article  PubMed  CAS  Google Scholar 

  • Grieco M, Santoro M et al (1990) PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60: 557–563

    Article  PubMed  CAS  Google Scholar 

  • Hancock SL, Cox RS et al (1991) Thyroid diseases after treatment of Hodgkin’s disease. New Engl J Med 325: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Fulton N et al (1994) N-RAS mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 116: 1010–1016

    PubMed  CAS  Google Scholar 

  • Harach HR, Williams ED (1995) Childhood thyroid cancer in England and Wales. Br J Cancer 72: 777–783

    Article  PubMed  CAS  Google Scholar 

  • Harris CC (1993) p53: at the crossroads of molecular carcinogenesis and risk assessment. Science 262:1980–1981

    Google Scholar 

  • Hillebrandt S, Streffer C et al (1996) Mutations in the p53 tumour suppressor gene in thyroid tumours of children from areas contaminated by the Chernobyl accident. Int J Radiat Biol 69: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Hsu IC, Metcalf RA et al (1991) Mutational hotspot in the p53 gene in human hepatocellular carciomas. Nature 350: 427–428

    Article  PubMed  CAS  Google Scholar 

  • Ishizaka Y, Ochiai M (1989) Activation of the ret II oncogene without a sequence encoding a transmembrane domain and transforming activity of two ret-II oncogene products differing in carboxy-termini due to alternative splicing. Oncogene 4: 789–794

    PubMed  CAS  Google Scholar 

  • Ishizaka Y, Kobayashi S et al (1991) Detection of retPTC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene 6: 1667–1672

    PubMed  CAS  Google Scholar 

  • Ito T, Seyama T et al (1992) Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res 52: 1369–1371

    PubMed  CAS  Google Scholar 

  • Ito T, Seyama T et al (1993a) Genetic alterations in thyroid tumor progression: association with p53 gene mutations. Jpn J Cancer Res 84: 526–531

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Seyama T et al (1993b) In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res 53: 2940–2943

    PubMed  CAS  Google Scholar 

  • Ito T, Seyama T et al (1994) Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet 344: 259

    PubMed  CAS  Google Scholar 

  • Jhiang S, Caruso DR et al (1992) Detection of the PTC/ret tP oncogene in human thyroid cancers. Oncogene 7: 1331–1337

    PubMed  CAS  Google Scholar 

  • Jhiang S, Smanik A et al (1994) Development of a single-step duplex RT-PCR detecting different forms of ret activation, and identification of the third form of in vivo ret activation in human papillary thyroid carcinoma. Cancer Lett 78: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Jing S, Wen D et al (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-a, a novel receptor for GDNF. Cell 85: 1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Karga H, Lee JK et al (1991) RAS oncogene mutations in benign and malignant thyroid neoplasms J Clin Endocrinol Metabol 73: 832–836

    Article  CAS  Google Scholar 

  • Kazakov VS, Demidchik EP (1992) Thyroid cancer after Chernobyl. Nature 359: 21

    Article  PubMed  CAS  Google Scholar 

  • Klugbauer S, Lengfelder E et al (1995) High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene 11: 2459–2467

    PubMed  CAS  Google Scholar 

  • Klugbauer S, Lengfelder E et al (1996) A new form of RET rearrangement in thyroid carcinomas of children after the Chernobyl reactor accident. Oncogene 13: 1099–1102

    PubMed  CAS  Google Scholar 

  • Klugbauer S, Demidchik EP et al (1998a) Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res 58: 198–203

    PubMed  CAS  Google Scholar 

  • Klugbauer S, Demidchik EP et al (1998b) Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene 16: 671–675

    Article  PubMed  CAS  Google Scholar 

  • Lemoine NR, Mayall ES (1988) Activated RAS oncogenes in human thyroid cancers. Cancer Res 48: 4459–4463

    PubMed  CAS  Google Scholar 

  • Lyons J, Landis C et al (1990) Two G protein oncogenes in human endocrine tumors. Science 249: 655–659

    Article  PubMed  CAS  Google Scholar 

  • Marsh DJ, Mulligan LM et al (1997) RET proto-oncogene mutations in multiple endocrine neoplasia type 2 and medullary thyroid carcinoma. Horm Res 47: 168–178

    Article  PubMed  CAS  Google Scholar 

  • Matsuo K, Friedman E et al (1993) The thyrotropin receptor is not an oncogene for thyroid tumors: structural studies of the TSH-R and the a-subunit of GS in human thyroid neo-plasmas. J Clin Endocrinol Metab 76: 1446–1451

    Article  PubMed  CAS  Google Scholar 

  • Minoletti F, Butti MG et al (1994)The two genes generating RET/PTC3 are localized in chromosomal band 10811.2. Genes Chromosomes Cancer 11: 51–57

    Google Scholar 

  • Nakamura T, Yana I et al (1992) p53 gene mutations associated with anaplastic transformation of human thyroid carcinomas. Jpn J Cancer Res 83: 1293–1298

    Google Scholar 

  • Namba H, Rubin SA et al (1990) Point mutations of RAS oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4: 1471–1479

    Article  Google Scholar 

  • Nikiforovy, Gnepp DR (1994) Pediatric thyroid cancer after the Chernobyl disaster. Cancer 74: 748–766

    Article  Google Scholar 

  • Nikoforov YE, Nikiforova MN et al (1996) Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene 13: 687–693

    Google Scholar 

  • Nikoforov YE, Rowland JM et al (1997) Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57: 1690–1694

    Google Scholar 

  • O’Sullivan C, Barton C et al (1991) Activating point mutations of the gsp oncogene in human thyroid adenomas. Mol Carcinog 4: 345–349

    Article  PubMed  Google Scholar 

  • Pacini F, Vorontsova T et al (1997) Post-Chernobyl thyroid carcinoma in Belarus children and adolescents: comparison with naturally occurring thyroid carcinoma in Italy and France. J Clin Endocrinol Metabol 82: 3563–3569

    Article  CAS  Google Scholar 

  • Pierotti MA, Bongarzone I et al (1996) Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Prentice RL, Kato H et al (1982) Radiation exposure and thyroid cancer incidence among Hiroshima and Nagasaki residents. Natl Cancer Inst Mongr 62: 207–212

    CAS  Google Scholar 

  • Rabes HM, Klugbauer S (1997) Strahleninduzierte Schilddrüsenkarzinome bei Kindern: Hohe Prävalenz von RET-Rearrangement. Verh Dtsch Ges Pathol 81: 139–144

    PubMed  CAS  Google Scholar 

  • Ron E, Modan B et al (1989) Thyroid neoplasia following low-dose radiation in childhood. Radiat Res 120: 516–531

    Article  PubMed  CAS  Google Scholar 

  • Ron E, Lubin JH et al (1992) Thyroid cancer incidence. Nature 360: 113

    Article  PubMed  CAS  Google Scholar 

  • Ron E, Lubin JH et al (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141: 259–277

    Article  PubMed  CAS  Google Scholar 

  • Russo D, Arturi F et al (1995) Genetic alterations in thyroid hyperfunctioning adenomas. J Clin Endocrinol Metab 80: 1347–1351

    Article  PubMed  CAS  Google Scholar 

  • Said S, Schlumberger M et al (1994) Oncogenes and anti-oncogenes in human epithelial thyroid tumors. J Endocrinol Invest 17: 371–379

    PubMed  CAS  Google Scholar 

  • Santoro M, Carlomagno F et al (1992) Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89: 1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Santoro M, Dathan NA et al (1995) Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9: 509–516

    Google Scholar 

  • Santoro M, Grieco M et al (1994) Molecular defects in thyroid carcinomas: role of the RET oncogene in thyroid neoplastic transformation. Eur J Endocrinol 133: 513–522

    Article  Google Scholar 

  • Schneider AB, Ron E et al (1993) Dose-response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrin Metabol 77: 362–369

    Article  CAS  Google Scholar 

  • Shi Y, Zou M et al (1991) High rates of RAS codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res 51: 2690–2693

    PubMed  CAS  Google Scholar 

  • Shore RE (1992) Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radiat Res 131: 98–111

    Article  PubMed  CAS  Google Scholar 

  • Shore RE, Woodard E et al (1985) Thyroid tumors following thymus irradiation. J Natl Cancer Inst 6: 1177–1184

    Google Scholar 

  • Shore RE, Hildreth N et al (1993) Thyroid cancer among persons given X-ray treatment in infancy for an enlarged thymus gland. Am J Epidemiol 137: 1068–1080

    PubMed  CAS  Google Scholar 

  • Smanik PA, Furminger TL et al (1995) Breakpoint characterization of the ret/PTC oncogene in human papillary thyroid carcinoma. Hum Mol Gen 4: 2313–2318

    Article  PubMed  CAS  Google Scholar 

  • Smida J, Zitzelsberger H et al (1997) p53 mutations in childhood thyroid tumours from Belarus and in thyroid tumours without radiation history. Int J Cancer 73: 802–807

    Google Scholar 

  • Sozzi G, Bongarzone I et al (1994) A t(10;17) translocation creates the RET/PTC2 chimeric transforming sequence in papillary thyroid carcinoma. Genes Chromosomes Cancer 9: 244–250

    Article  PubMed  CAS  Google Scholar 

  • Suarez HG, DuVillard JA et al (1990) Presence of mutations in all three RAS genes in human thyroid tumors. Oncogene 5: 565–570

    PubMed  CAS  Google Scholar 

  • Suarez HG, DuVillard JA et al (1991) gsp mutations in human thyroid tumors. Oncogene 6: 677–679

    Google Scholar 

  • Suchy B, Waldmann V et al (1998) Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contast to adult thyroid tumours. Br J Cancer 77: 952955

    Google Scholar 

  • Sugg SL, Zheng L et al (1996) ret/PTC-1, 2, and -3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrinol Metab 81: 3360–3365

    Google Scholar 

  • Takahashi M (1995) Oncogenic activation of the ret protooncogene in thyroid cancer Crit Rev Oncog 6: 35–46

    PubMed  CAS  Google Scholar 

  • Takahashi M, Ritz J et al (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42: 581–588

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, Watson MA et al (1994) p53 mutation hotspot in radon-associated lung cancer. Lancet 343: 86–87

    Google Scholar 

  • Thompson DE, Mabuchi K et al (1994) Cancer incidence in atomic bomb survivors. II. Solid tumors, 1958–1987. Radiat Res 137: S17 - S67

    Article  PubMed  CAS  Google Scholar 

  • Treanor JJS, Goodman L et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Trupp M, Arenas E et al (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381: 785–789

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki T, Takahashi M et al (1995) Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 10: 191–198

    PubMed  CAS  Google Scholar 

  • Wajjwalku W, Nakamura S et al (1992) Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn J Cancer Res 83: 671–675

    Article  PubMed  CAS  Google Scholar 

  • Waldmann V, Rabes HM (1997) Absence of Gsa gene mutations in childhood thyroid tumors after Chernobyl in contrast to sporadic adult thyroid neoplasia. Cancer Res 57: 2358–2361.

    PubMed  CAS  Google Scholar 

  • Wright PA, Lemoine NR et al (1989) Papillary and follicular thyroid carcinomas show a different pattern of RAS oncogene mutation. Br J Cancer 60: 576–577

    Article  PubMed  CAS  Google Scholar 

  • Wynford-Thomas D (1993) Molecular basis of epithelial tumorigenesis: the thyroid model. Crit Rev Oncol 4: 1–23

    CAS  Google Scholar 

  • Wynford-Thomas D (1997) Origin and progression of thyroid epithelial tumours: cellular and molecular mechanisms. Horm Res 47: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Iwahana H et al (1993) Rare mutations of the Gsa subunit gene in human endocrine tumors. Cancer 72: 1386–1393

    Article  PubMed  CAS  Google Scholar 

  • Zou M, Shi Yet al (1993) p53 mutations in all stages of thyroid carcinomas. J Clin Endocrinol Metabol 77: 1054–1058

    Google Scholar 

  • Zou M, Shi Y et al (1994) Low rate of ret proto-oncogene activation (PTC/retptc) in papillary thyroid carcinomas from Saudi Arabia. Cancer 73: 176–180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Rabes, H.M., Klugbauer, S. (1998). Molecular Genetics of Childhood Papillary Thyroid Carcinomas After Irradiation: High Prevalence of RET Rearrangement. In: Schwab, M., Rabes, H.M., Munk, K., Hofschneider, H.P. (eds) Genes and Environment in Cancer. Recent Results in Cancer Research, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46870-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46870-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46872-8

  • Online ISBN: 978-3-642-46870-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics