Skip to main content

2 Genomics to Study Basal Lineage Fungal Biology: Phylogenomics Suggests a Common Origin

  • Chapter
  • First Online:

Part of the book series: The Mycota ((MYCOTA,volume 13))

Abstract

Basal lineages of the kingdom Fungi comprise terrestrial and aquatic fungi, which are traditionally summarized to the Chytridiomycota and the Zygomycota in a colloquial sense. Advances in next-generation sequencing allow a new layer of knowledge to be gained, which is invaluable for understanding not only the evolution of fungi but also their adaptation to the environment and development of pathogenic traits. Recent revisions using large-scale multigene phylogenies suggested a polyphyletic origin of both the Chytridiomycota and the Zygomycota, which were therefore separated into three distinct phyla and five subphyla, respectively. However, because of the recent appearance of the genomic sequences of basal fungi, a comprehensive genome analysis is in progress for these basal groups. Large-scale genome projects produced a total of 51 genomes of basal fungi and 32 genomes from the Microsporidia. First insights suggest a revision of our understanding of the genome evolution and architecture, revealing fascinating novelties that qualify the basal fungi as an outstanding and unique fungal group deserving much more attention from the scientific community.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe A, Oda Y, Asano K, Sone T (2007) Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia 99:714–722

    PubMed  CAS  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JA, Bowser SS, Bragerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    PubMed  Google Scholar 

  • Alastruey-Izquierdo A, Hoffmann K, De Hoog GS, Rodriguez-Tudela JL, Voigt K et al (2010) Species recognition and clinical relevance of the zygomycetous genus Lichtheimia (syn. Absidia pro parte, Mycocladus). J Clin Microbiol 48:2154–2170

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York

    Google Scholar 

  • Alvarez E, Sutton DA, Cano J, Fothergill AW, Stchigel A, Rinaldi MG, Guarro J (2009) Spectrum of zygomycete species identified in clinically significant specimens in the United States. J Clin Microbiol 47:1650–1656

    PubMed Central  PubMed  CAS  Google Scholar 

  • An Z, Wang C, Liu X, Bennett JW (2010) China’s fungal genomics initiative: a whitepaper. Mycology 1:1–8

    CAS  Google Scholar 

  • Arroyo-Begovich A, Cárabez-Trejo A (1982) Location of chitin in the cyst wall of Entamoeba invadens with colloidal gold racers. J Parasitol 68:253–258

    PubMed  CAS  Google Scholar 

  • Bacchi CJ, Weiss LM, Lane S, Frydman B, Valasinas A, Reddy V, Sun JS, Marton LJ, Khan IA, Moretto M, Yarlett N, Wittner M (2002) Novel synthetic polyamines are effective in the treatment of experimental microsporidiosis, an opportunistic AIDS-associated infection. Antimicrob Agents Chemother 46:55–61

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 90:11558–11562

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barr DJS (1978) Taxonomy and phylogeny of chytrids. Biosystems 10:153–165

    PubMed  CAS  Google Scholar 

  • Barr DJS (1980) An outline for the reclassification of the Chytridiales, and for a new order, the Spizellomycetales. Can J Bot 58:2380–2394

    Google Scholar 

  • Barr DJS (1984) Cytological variation in zoospores of Spizellomyces (Chytridiomycetes). Can J Bot 62:1202–1208

    Google Scholar 

  • Barr DJS (2001) Chytridiomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The mycota VII Part A. Systematics and evolution. Springer, Berlin, pp 93–112

    Google Scholar 

  • Barron GL (1987) The gun cell of Haptoglossa mirabilis. Mycologia 79:877–883

    Google Scholar 

  • Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungal phylogeny. In: Harbone JB (ed) Phytochemical phylogeny. Academic, London, pp 81–103

    Google Scholar 

  • Bartnicki-Garcia S (1987) The cell wall in fungal evolution. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, New York, pp 389–403

    Google Scholar 

  • Bastidas RJ, Shertz CA, Lee SC, Heitman J, Cardenas ME (2012) Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor. Eukaryot Cell 11:270–281

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bennett JW (2000) Filamentous fungi. In: Encyclopedia of microbiology. Academic, San Diego, pp 468–477

    Google Scholar 

  • Besl H, Bresinsky A (1997) Chemosystematics of Suillaceae and Gomphidiaceae (suborder Suillineae). Plant Syst Evol 206:223–242

    Google Scholar 

  • Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    PubMed Central  PubMed  Google Scholar 

  • Birren B, Fink G, Lander E (2002) The fungal genome initiative. Paper of the Whitehead Institute Center for Genome Research developed by the Fungal Research Community. http://www.broadinstitute.org/annotation/fungi/fgi/FGI_01_whitepaper_2002.pdf. Accessed 19 Oct 2010

  • Bohne W, Ferguson DJP, Kohler K, Gross U (2000) Developmental expression of a tandemly repeated, glycine- and serine-rich spore wall protein in the microsporidian pathogen Encephalitozoon cuniculi. Infect Immun 68:2268–2275

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    PubMed  CAS  Google Scholar 

  • Briggs CJ, Knapp R, Vrendenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc Natl Acad Sci U S A 107:9695–9700

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the ‘forgotten’ cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709

    PubMed  CAS  Google Scholar 

  • Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée K-H (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 48:9724–9727

    PubMed  CAS  Google Scholar 

  • Campos-Góngora E, Ebert F, Willhoeft U, Said-Fernández S, Tannich E (2004) Characterization of chitin synthases from Entamoeba. Protist 155:323–330

    PubMed  Google Scholar 

  • Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47. doi:10.1186/1741-7007-10-47

    PubMed Central  PubMed  Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481

    PubMed  CAS  Google Scholar 

  • Chakrabarti A, Das A, Mandal J, Shivaprakash MR, George VK, Tarai B, Rao P, Panda N, Verma SC, Sakhuja V (2006) The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med Mycol 44:335–342

    PubMed  Google Scholar 

  • Collins JP (2013) History, novelty, and emergence of an infectious amphibian disease. Proc Natl Acad Sci U S A 110:9193–9194

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cornely OA, Vehreschild JJ, Rüping MJGT (2009) Current experience in treating invasive zygomycosis with posaconazole. Treatment options for zygomycosis. Clin Microbiol 15:77–81

    CAS  Google Scholar 

  • Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI, Evans JD (2009) Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 5:e1000466

    PubMed Central  PubMed  Google Scholar 

  • Corradi N et al (2010) The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 1:77

    PubMed  Google Scholar 

  • Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, Didier ES, Fan L, Heiman DI, Levin JZ, Young S, Zeng Q, Troemel ER (2012) Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 22:2478–2488

    PubMed Central  PubMed  CAS  Google Scholar 

  • Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748

    PubMed Central  PubMed  CAS  Google Scholar 

  • De Hoog GS, Guarro J, Gene J, Figueras M (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures, Utrecht. http://books.google.de/books?id=clv_CWVR1GoC

  • De Santiago AALCM, Hoffmann K, Lima DX, de Oliviera RJV, Vieira HEE, Malosso E, Maia LC, da Silva GA (2013) A new species of Lichtheimia (Mucoromycotina, Mucorales) isolated from Brazilian soil. Mycol Prog. doi:10.1007/s11557-113-0920-8

    Google Scholar 

  • Delbac F, Peuvel I, Metenier G, Peyretaillade E, Vivares CP (2001) Microsporidian invasion apparatus: identification of a novel polar tube protein and evidence for clustering of ptp1 and ptp2 genes in three Encephalitozoon species. Infect Immun 69:1016–1024

    PubMed Central  PubMed  CAS  Google Scholar 

  • Doweld A (2001) Prosyllabus tracheophytorum—Tentamen systematis plantarum vascularium (Tracheophyta). Goes MMI, Moscow, pp 1–111

    Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ebersberger I, Gube M, Strauss S, Kupczok A, Eckart M, Voigt K, Kothe E, von Haeseler A (2009a) A stable backbone for the fungi. Nat Precedings. hdl:10101/npre.2009.2901.1. Accessed 19 Sept 2012

    Google Scholar 

  • Ebersberger I, Strauss S, von Haeseler A (2009b) HaMStR: profile hidden Markov model based. BMC Evol Biol 9:157

    Google Scholar 

  • Ebersberger I, de Matos SR, Kupczok A, Gube M, Kothe E, Voigt K, von Haeseler A (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29:1319–1334

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eckart M, Eckart M, Fliegerova K, Hoffmann K, Voigt K (2010) Molecular identification of anaerobic rumen fungi. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi: Part I. Springer, Berlin, pp 297–313

    Google Scholar 

  • Fast NM, Keeling PJ (2001) Alpha and beta subunits of pyruvate dehydrogenase E1 from the microsporidian Nosema locustae: mitochondrion-derived carbon metabolism in microsporidia. Mol Biochem Parasitol 117:201–209

    PubMed  CAS  Google Scholar 

  • Fisher MC, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    PubMed  CAS  Google Scholar 

  • Frisvad JC, Filtenborg O (1990) Secondary metabolites as consistent criteria in Penicillium taxonomy and a synoptic key to Penicillium subgenus Penicillium. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum Press, New York, pp 373–384

    Google Scholar 

  • Gherbawy Y, Voigt K (eds) (2010) Molecular identification of fungi. Springer, Berlin, Heidelberg, New York: 1st edition, March 2010, XXI, 501 p. 87 illus., 39 in colour. Hardcover, ISBN 978-3-642-05041-1

    Google Scholar 

  • Glockling SL, Beakes GW (2002) Ultrastructural morphogenesis of dimorphic arcuate infection (gun) cells of Haptoglossa erumpens an obligate parasite of Bunonema nematodes. Fungal Genet Biol 37:250–262

    PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6,000 genes. Science 274(546):563–567

    Google Scholar 

  • Greco N, Bussers JC, Van Daele Y, Goffinet G (1990) Ultrastructural localization of chitin in the cystic wall of Euplotes muscicola Kahl (Ciliata, Hypotrichia). Eur J Protistol 26:75–80

    PubMed  CAS  Google Scholar 

  • Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1:181–185

    PubMed Central  PubMed  Google Scholar 

  • Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE (2011) Fueling the future with fungal genomics. Mycology 3:192–209

    Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Research. Nucleic Acids Res 40(1):D26–D32

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gryganskyi AP, Lee SC, Litvintseva AP, Smith ME, Bonito G, Porter T, Anishchenko IM, Heitman J, Vilgalys R (2010) Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex. PLoS One 5(12):e15273. doi:10.1371/journal.pone.0015273

    PubMed Central  PubMed  Google Scholar 

  • Hashimoto T, Sánchez LB, Shirakura T, Müller M, Hasegawa M (1998) Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci U S A 95:6860–6865

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    PubMed  CAS  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth and Bisby’s dictionary of the fungi, 8th edn. International Mycological Institute, Kew, London

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    PubMed  CAS  Google Scholar 

  • Herth W, Kuppel A, Schnepf E (1977) Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis). J Cell Biol 73:311–321

    PubMed  CAS  Google Scholar 

  • Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133

    PubMed  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson O, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch T, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde K, Köljalb U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto R, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schuessler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang A, Weir A, Weiss M, White M, Winka K, Yao Y-J, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Kirk PM (2009) Fungal ecology catches fire. New Phytol 184:279–282

    PubMed  Google Scholar 

  • Hijri M, Redecker D, MacDonald-Comber Petetot JA, Voigt K, Wöstemeyer J, Sanders IR (2002) Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Appl Environ Microbiol 68:4567–4573

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hirt RP, Healy B, Vossbrinck CR, Canning EU, Embley TM (1997) A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr Biol 7:995–998

    PubMed  CAS  Google Scholar 

  • Hoffmann K, Telle S, Walther G, Eckart M, Kirchmair M, Prillinger HJ, Prazenica A, Newcombe G, Dölz F, Papp T, Vágvölgyi C, de Hoog S, Olsson L, Voigt K (2009) Diversity, genotypic identification, ultrastructural and phylogenetic characterization of zygomycetes from different ecological habitats and climatic regions: limitations and utility of nuclear ribosomal DNA barcode markers. In: Gherbawy Y, Mach RL, Rai M (eds) Current advances in molecular mycology. Nova Science, New York, pp 263–312

    Google Scholar 

  • Hoffmann K, Voigt K, Kirk PM (2011) Mortierellomycotina subphyl. nov. based on multi-gene genealogies. Mycotaxon 115:353–363

    Google Scholar 

  • Humber RA (2012) Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi. Mycotaxon 120:477–492

    Google Scholar 

  • James TY, Berbee ML (2011) No jacket required—new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. Bioessays 34:94–102

    PubMed  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006a) Reconstructing the early evolution of the fungi using a six-gene phylogeny. Nature 443:818–822

    PubMed  CAS  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Strandridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    PubMed  Google Scholar 

  • Jany JL, Pawlowska TE (2010) Multinucleate spores contribute to evolutionary longevity of asexual glomeromycota. Am Nat 175:424–435. doi:10.1086/650725

    PubMed  Google Scholar 

  • Johnson DL, Garnow RI (1971) The avoidance response in Phycomyces. J Gen Physiol 57:41–49

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011a) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    PubMed  CAS  Google Scholar 

  • Jones MDM, Richards TA, Hawksworth DL, Bass D (2011b) Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus 2:173–175

    PubMed Central  PubMed  Google Scholar 

  • Joneson S, Stajich JE, Shiu S-H, Rosenblum EB (2011) Genomic transition to pathogenicity in chytrid tungi. PLoS Pathog 7(11):e1002338

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kamaishi T, Hashimoto T, Nakamura Y, Nakamura F, Murata S, Okada N, Okamoto KI, Shimizu M, Hasegawa M (1996) Protein phylogeny of translation elongation factor EF-1α suggests microsporidians are extremely ancient eukaryotes. J Mol Evol 42:257–263

    PubMed  CAS  Google Scholar 

  • Karpov SA, Mikhailov KV, Mirzaeva GS, Mirabdullaev IM, Mamkaeva KA, Titova NN, Aleoshin VV (2013) Obligately phagotrophic aphelids turned out to branch with the earliest-diverging Fungi. Protist 164:195–205

    PubMed  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prenier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Slamovits CH (2004) Simplicity and complexity of Microsporidian genomes. Eukaryot Cell 3:1363–1369

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kneipp LF, Andrade AF, de Souza W, Angluster J, Alviano CS, Travassos LR (1998) Trichomonas vaginalis and Tritrichomonas foetus: expression of chitin at the cell surface. Exp Parasitol 89:195–204

    PubMed  CAS  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778

    PubMed  CAS  Google Scholar 

  • Lanternier F, Dannaoui E, Morizot G, Elie C, Huerre M et al (2012) A global analysis of mucormycosis in France: the RetroZygo Study (2005–2007). Clin Infect Dis 54:35–43. doi:10.1093/cid/cir880

    Google Scholar 

  • Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121

    PubMed  CAS  Google Scholar 

  • Lee SC, Li A, Calo S, Heitman J (2013) Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog 9(9):e1003625. doi:10.1371/journal.ppat.1003625

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, Torres-Martinez SR, Lee SC (2011) Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog 7(6):e1002086. doi:10.1371/journal.ppat.1002086

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235

    PubMed  Google Scholar 

  • Liu YJ, Hodson MC, Hall BD (2006) Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol Biol 6:74. doi:10.1186/1471-2148-6-74

    PubMed Central  PubMed  CAS  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Google Scholar 

  • Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G et al (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5:e1000549. doi:10.1371/journal.pgen.1000549

    PubMed Central  PubMed  Google Scholar 

  • Marano AV, Gleason FH, Bärlocher F, Pires-Zottarelli CL, Lilje O, Schmidt SK, Rasconi S, Kagami M, Barrera MD, Sime-Ngando T, Boussiba S, de Souza JI, Edwards JE (2012) Quantitative methods for the analysis of zoosporic fungi. J Microbiol Methods 89:22–33

    PubMed  CAS  Google Scholar 

  • Marcet-Houben M, Marceddu G, Gabaldón T (2009) Phylogenomics of the oxidative phosphorylation in fungi reveals extensive gene duplication followed by functional divergence. BMC Evol Biol 9:295

    PubMed Central  PubMed  Google Scholar 

  • Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Sachar-Hill Y, Tuskan GA, Young JPW (2008) The long hard road to a completed Glomus intraradices genome. New Phytol 180:747–750

    PubMed  CAS  Google Scholar 

  • Maxson LR, Maxson RD (1990) Immunological techniques. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, pp 127–155

    Google Scholar 

  • McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’Homme van Reine WF, Smith GF, Wiersema JH, Turland NJ (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Regnum vegetabile 154. Adopted by the Eighteenth International Botnical Congress Melbourne, Australia, July 2011. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  • Mehrotra RS, Aneja KR (1990) An introduction to Mycology, 1st edn. New Age (P) Ltd. Publishers, New Delhi, pp 141–143

    Google Scholar 

  • Mendoza L, Taylor JW, Ajello L (2002) The class Mesomycetozoea: a heterogenous group of microorganisms at the animal-fungal boundary. Annu Rev Microbiol 56:315–344

    PubMed  CAS  Google Scholar 

  • Mulisch M (1993) Chitin in protistan organisms: distribution, synthesis and deposition. Eur J Protistol 29:1–18

    PubMed  CAS  Google Scholar 

  • Noha H, Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Mostafa S, Elshahed MS (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79:4620–4634. doi:10.1128/AEM.00821-13

    Google Scholar 

  • Paterson RRM, Bridge PD (1994) Biochemical techniques for filamentous fungi. CAB International, Wallingford

    Google Scholar 

  • Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154:S96–S124

    PubMed  Google Scholar 

  • Patterson DJ, Zölffel M (1991) Heterotrophic flagellates of uncertain taxonomic position. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates, vol 45, Systematics Association Special Volume. Clarendon, Oxford, pp 427–447

    Google Scholar 

  • Peyretaillade E, Biderre C, Peyret P, Duffieux F, Méténier G, Gouy M, Michot B, Vivarès CP (1998a) Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core. Nucleic Acids Res 26:3513–3520

    PubMed Central  PubMed  CAS  Google Scholar 

  • Peyretaillade E, Broussolle V, Peyret P, Méténier G, Gouy M, Vivarès CP (1998b) Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin. Mol Biol Evol 15:683–689

    PubMed  CAS  Google Scholar 

  • Philipps BL, Puschendorf R (2013) Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America. Proc Biol Sci 280:20131290

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    PubMed  CAS  Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, London

    Google Scholar 

  • Popescu T, Roessler A, Fukshansky L (1989) A novel effect in Phycomyces phototropism. Plant Physiol 91:1586–1593

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ragan MA, Murphy CA, Rand TG (2003) Are Ichthyosporea animals or fungi? Bayesian phylogenetic analysis of elongation factor 1a of Ichthyophonus irregularis. Mol Phylogent Evol 29:550–562

    CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human disease. Clin Microbiol Rev 13:236–301

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ride WDL, Cogger HG, Dupuis C, Kraus O, Minelli A, Thompson FC, Tubbs PK (2000) International code of zoological nomenclature. Adopted by the International Union of Biological Sciences. International Trust for Zoological Nomenclature 1999, London

    Google Scholar 

  • Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, Sein M, Sein T, Chiou CC, Chu JH, Kontoyiannis DP, Walsh TJ (2005) Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 41:634–653

    PubMed  Google Scholar 

  • Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D, Rodriguez D, Eastman JM, Richards-Hrdlicka K, Joneson S, Jenkinson TS, Longcore JE, Olea GP, Toledo LF, Arellano ML, Medina EM, Restrepo S, Flechas SV, Berger L, Briggs CJ, Stajich JE (2013) Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci U S A 110:9193–9194

    Google Scholar 

  • Ruiz-Trillo I, Lane CE, Archibald JM, Roger AJ (2006) Insights into the evolutionary origin and genome architecture of the unicellular opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J Eukaryot Microbiol 53:379–384

    PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray MW (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118

    PubMed  CAS  Google Scholar 

  • Saffo MB, Fultz S (1986) Chitin in the symbiotic protist Nephromyces. Can J Bot 64:1306–1310

    CAS  Google Scholar 

  • Saffo MB, McCoy AM, Rieken C, Slamovits CH (2010) Nephromyces, a beneficial apicomplexan symbiont in marine animals. Proc Natl Acad Sci U S A 107:16190–16195

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann HW, Ekaterina S, Schmidt-Heck SJ, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of Choanozoa and the origin of animals. PLoS ONE 3:e2098. doi:10.1371/journal.pone.0002098

    PubMed Central  PubMed  Google Scholar 

  • Shelest E (2008) Transcription factors in fungi. FEMS Microbiol Lett 286:145–151

    PubMed  CAS  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and co-incidence with vascular land plants. Nature 363:67–69

    Google Scholar 

  • Skiada A, Pagano L, Groll A, Zimmerli S, Dupont B, Lagrou K, Lass-Flörl C, Bouza E, Klimko N, Gaustad P, Richardson M, Hamal P, Akova M, Meis JF, Rodriguez-Tudela JL, Roilides E, Mitrousia-Ziouva A, Petrikkos G, European Confederation of Medical Mycology Working Group on Zygomycosis (2011) Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect 17:1859–1867

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Spatafora J (2011) 1000 fungal genomes to be sequenced. Fungi: 1000 genomes. IMA Fungus 2(2):41

    Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    PubMed  CAS  Google Scholar 

  • Sugar AM (1992) Mucormycosis. Clin Infect Dis 14(Suppl 1):S126–S129. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=90004andtool=pmcentrezandrendertype=abstract

  • Sun HY, Aguado JM, Bonatti H, Forrest G, Gupta KL, Safdar N, John GT, Pursell KJ, Muñoz P, Patel R, Fortun J, Martin-Davila P, Philippe B, Philit F, Tabah A, Terzi N, Chatelet V, Kusne S, Clark N, Blumberg E, Julia MB, Humar A, Houston S, Lass-Florl C, Johnson L, Dubberke ER, Barron MA, Lortholary O, Singh N, Zygomycosis Transplant Study Group (2009) Pulmonary zygomycosis in solid organ transplant recipients in the current era. Am J Transplant 9:2166–2171

    PubMed  Google Scholar 

  • Tanabe Y, Watanabe MM, Sugiyama J (2002) Are Microsporidia really related to Fungi? A reappraisal based on additional gene sequences from basal fungi. Mycol Res 106:1380–1391

    CAS  Google Scholar 

  • Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S, Machouart M, Voigt K, van de Sande WWJ, Dolatabadi S, Meis JF, Walther G (2012) Antifungal susceptibility and phylogeny of opportunistic members of the order Mucorales. J Clin Microbiol 50:66–75

    PubMed Central  PubMed  CAS  Google Scholar 

  • Voigt K (2012a) Chytridiomycota. In: Engler A, Frey W (eds) Syllabus of plant families, vol 1/1: Blue-green algae, myxomycetes and myxomycete-like organisms, phytoparqasitic protists, heterotrophic Heterokontobionta and Fungi pp. Borntraeger, Stuttgart, pp 106–129

    Google Scholar 

  • Voigt K (2012b) Zygomycota. In: Engler A, Frey W (eds) Syllabus of plant families, vol 1/1: Blue-green algae, myxomycetes and myxomycete-like organisms, phytoparqasitic protists, heterotrophic Heterokontobionta and Fungi pp. Borntraeger, Stuttgart, pp 130–162

    Google Scholar 

  • Voigt K, Kirk PM (2011) Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology. Appl Microbiol Biotechnol 90:41–57

    PubMed  CAS  Google Scholar 

  • Voigt K, Marano AV, Gleason F (2013) Ecological and economical importance of parasitic and zoosporic true Fungi. In: Kempken F (ed) The Mycota vol. XI: agricultural applications, 2nd edn. Springer, Berlin, pp 243–270

    Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    PubMed  CAS  Google Scholar 

  • Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585

    PubMed  CAS  Google Scholar 

  • Voyles J, Vredenburg VT, Tunstall TS, Parker JM, Briggs CJ, Rosenblum EB (2012) Pathophysiology in mountain yellow-legged frogs (Rana muscosa) during a chytridiomycosis outbreak. PLoS ONE 7:e35374. doi:10.1371/journal.pone.0035374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525

    PubMed  Google Scholar 

  • Wang L, Chen W, Feng Y, Ren Y, Gu Z, Chen H, Wang H, Thomas MJ, Zhang B, Berquin IM, Li Y, Wu J, Zhang H, Song Y, Liu X, Norris JS, Wang S, Du P, Shen J, Wang N, Yang Y, Wang W, Feng L, Ratledge C, Zhang H, Chen YQ (2011) Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE 6(12):e28319. doi:10.1371/journal.pone.0028319

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang D, Wu R, Xu Y, Li M (2013) Draft genome sequence of Rhizopus chinensis CCTCCM201021, used for brewing traditional Chinese alcoholic beverages. Genome Announc 1(2):e0019512. doi:10.1128/genomeA.00195-12

    PubMed  Google Scholar 

  • Ward HHD, Alroy J, Lev BI, Keusch GT, Pereira MEA (1985) Identification of chitin as a structural component of Giardia cysts. Infect Immun 49:629–634

    PubMed Central  PubMed  CAS  Google Scholar 

  • Webster J, Weber RWS (2007) Introduction to fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163:150–160

    PubMed  CAS  Google Scholar 

  • Zettler LA, Nerad T, O’Kelly C, Sogin M (2001) The nucleariid amoebae: more protists at the animal-fungal boundary. J Eukaryot Microbiol 48:293–297

    PubMed  Google Scholar 

  • Zhao Z, Huiquan Liu H, Wang C, Xu JR (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to Kerstin Hoffmann and Martin Eckart (University of Jena, Germany) and Katerina Fliegerova (Czech Academy of Sciences, Prague, Czech Republic) for contributing microscopic images shown in Fig. 2.1a and to Paul M. Kirk (Royal Botanic Gardens Kew, UK) for providing the numbers of fungal species based on the Index Fungorum database (http://www.indexfungorum.org) (as of September 16, 2013) shown in Fig. 2.2. We thank Volker U. Schwartze (University of Jena, Germany) for technical assistance with drawing Figs. 2.2 and 2.6. This work was financially supported by the Leibniz Association and the University of Jena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Voigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shelest, E., Voigt, K. (2014). 2 Genomics to Study Basal Lineage Fungal Biology: Phylogenomics Suggests a Common Origin. In: Nowrousian, M. (eds) Fungal Genomics. The Mycota, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45218-5_2

Download citation

Publish with us

Policies and ethics