Skip to main content

Adipocytes and Osteoblasts from Human Adipose Tissue Mesenchymal Stem Cells for the Production of Compatible and Safe Biomaterial Crucial in Cosmetic, Reconstructive, and Regenerative Medicine

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures

Abstract

It is well established that mesenchymal stem cells (MSCs) with identical features as those from human bone marrow (BM) and human umbilical cord blood (UCB) can be obtained from different sources such as amniotic fluid, amniotic membrane, and adipose tissue. This project has particularly focused on the specific features of MSCs from human adipose tissue (hATMSCs) with the aim of verifying whether adipose tissue may be considered a valid source of multipotent MSCs compared with different sources such as BM or UCB and if their derived cells might keep any transdifferentiation ability. The use of adipose tissue reveals evident advantages: it is easy to obtain, painless, and minimally invasive; secondly, the isolated MSCs have shown a high grade of proliferation and growth rate, multilineage cell line differentiation capacity, and a great plasticity. Therefore, to confirm this premise, the study has been structured in three phases: (1) the isolated MSCs were induced to adipocytes and osteoblasts; (2) the adipocytes were used to be transdifferentiated to osteoblast cell lines; and (3) the use and the construction of bio-scaffold sea marine coral and the fibrin gel were previewed. Eventually, both osteocell groups were collected and seeded onto a sea coral scaffold to confirm their capability of homing in a bone-like environment to consider the potential clinical application for hard tissue reconstruction. Also adipocytes were seeded onto a fibrin gel to generate a human fatlike tissue to be used in soft and semihard tissues such as subcutaneous adipose tissue, cartilages, and intervertebral disk bulbs. Results have been confirmed using specific molecular and biochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chao NJ, Emerson SG, Weinberg KI. Stem cell transplant (cord blood transplants). Hematology Am Soc Hematol Educ Program. 2004;1:354–71.

    Google Scholar 

  2. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Olivier DA, Qinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001;7(11):581–8.

    Article  CAS  PubMed  Google Scholar 

  3. Koc O, Lazarus HM. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant. 2001;27(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  4. Lee OK, Kuo TK, Chen WM, Lee KD, Hsien SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75.

    Article  CAS  PubMed  Google Scholar 

  5. Liu TM, Martina M, Hutmacher DW, Po Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow and adipose tissue derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 2007;25(3):750–60.

    Article  PubMed  Google Scholar 

  6. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood). 2001;226(6):507–20.

    CAS  Google Scholar 

  7. Parolini O, Alviano F, Bagnara GP, Bilic B, Uhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz ICB, Sankar V, Soncini M, Stadler G, Surbek JD, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.

    Article  PubMed  Google Scholar 

  8. Rosada C, Justensen J, Melsvik D, Ebbesen PM, Kassem M. The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif Tissue Int. 2003;72(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  9. Stocum DL. Regenerative biology and medicine. Philadelphia: Elsevier; 2006. p. 229–37.

    Google Scholar 

  10. Tran CT, Gargiulo C, Thao HD, Tuan HM, Filgueira L, Strong M. In vitro culture and differentiation of osteoblasts on coral scaffold from human bone marrow mesenchymal stem cells. Cell Tissue Bank. 2010;12(4):247–61.

    Article  PubMed  Google Scholar 

  11. Tsai MS, Hwang SM, Chen KD, Lee YS, Hsu LW, Chang YJ, Wang CN, Peng HH, Chang YL, Chao AS, Chang SD, Lee KD, Wang TH, Wang HS, Soong YK. Functional network analysis on the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood and bone marrow. Stem Cells. 2007;25(10):2511–23.

    Article  CAS  PubMed  Google Scholar 

  12. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y. Mesenchymal stem cells from adult bone marrow differentiate into a cardiomyocyte phenotype in vitro. Soc Exp Biol Med. 2004;229(7):623–31.

    CAS  Google Scholar 

  13. Zhang DZ, Gai LY, Liu HW, Jin QH, Huang JH, Zhu XY. Transplantation of autologous adipose derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chin Med J. 2007;120(4):300–7.

    PubMed  Google Scholar 

  14. Bieback K, Kern S, Kutler H, Eichler H. Critical parameters for isolation of mesenchymal stem cells from umbilical cord. Stem Cells. 2004;22(4):625–34.

    Article  PubMed  Google Scholar 

  15. Boissy P, Malaval L, Jurdic P. Osteoblasts et osteoclastes une cooperation exemplaire entre cellules mesenchymateuses et cellules hematopoietiques. Le Chercheur un Carrefour de l’Information; Revue Synthese 2007;1–18.

    Google Scholar 

  16. Park KS, Lee YS, Kang KS. In vitro neuronal and osteogenic differentiation of mesenchymal stem cells from human umbilical cord blood. J Vet Sci. 2006;7(4):343–8.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K, Nakamura Y. Mesenchymal progenitors are able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell population. Stem Cells. 2007;25(7):1610–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zuk PA, Zhu M, Asjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sathishkumar S, Mohanashankar P, Boopalan PRJVC. Cell surface protein expression of stem cells from human adipose tissue at early passage with reference to mesenchymal stem cell phenotype. Intern J Med Med Sci. 2011;3(5):129–34.

    Google Scholar 

  20. Tuan RS, Chen FH. Cartilage. In: Botler A, Lear J, editors. Stem cells and gene based therapy. Berlin: Springer; 2006. p. 179–89.

    Chapter  Google Scholar 

  21. De Bari C, Dell’Accio F. Mesenchymal stem cells in rheumatology: a regenerative approach to joint repair. Clin Sci (Lond). 2007;113(8):339–48.

    Article  Google Scholar 

  22. Lin H, Xu R, Zhang Z, Chen L, Shi M, Wang FS. Implications of the immunoregulatory functions of mesenchymal stem cells in the treatment of human liver diseases. Cell Mol Immunol. 2011;8(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  23. Niemeyer P, Krause U, Kasten P, Kreuz PC, Henle P, Südkamp NP, Mehlhorn A. Mesenchymal stem cell-based HLA-independent cell therapy for tissue engineering of bone and cartilage. Curr Stem Cell Res Ther. 2006;1(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  24. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54(3):132–41.

    Article  CAS  PubMed  Google Scholar 

  25. Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84(10):893–902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yanez R, Lamana ML, Castro JG, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24(11):2582–91.

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa R. The importance of adipose derived stem cells and vascularized tissue regeneration in the field of tissue transplantation. Curr Stem Cell Res Ther. 2006;1(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  28. Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6(4):195–213.

    Article  PubMed  Google Scholar 

  29. Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells. 2011;3(4):25–33.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 2007;67(13):6304–13.

    Article  CAS  PubMed  Google Scholar 

  31. Lidong G, Shaoqing L, Yunfang W, Huimin Y, Daqing L, Lijuan H, Cixian B, Fang Y, Xue N, Shuangshuang S, Xuetao P. In vitro differentiation of human adipose derived mesenchymal stem cells into endothelial-like cells. Chin Sci Bull. 2006;51(15):1863–8.

    Article  Google Scholar 

  32. Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol. 2004;11(11):2792–800.

    Article  Google Scholar 

  33. Mizuno H, Hyakusoku H. Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. J Nippon Med Sch. 2003;70(4):300–6.

    Article  PubMed  Google Scholar 

  34. Mizuno H. Adipose derived stem cells for tissue repair and regeneration: ten years of research and literature review. J Nippon Med Sch. 2009;76(2):56–66.

    Article  PubMed  Google Scholar 

  35. Banas A, Teratani T, Yamamoto YY, Takeshita F, Quinn G, Okochi H, Ochiya T. Adipose tissue derived mesenchymal stem cells as source of hepatocytes. Hepatology. 2007;46(1):219–28.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Q, Steigelman MB, Walker JA, Chen S, Hornsby PJ, Bohnenblust ME, Wang HT. In vitro osteogenic differentiation of adipose stem cells after lentiviral transduction with green fluorescent protein. J Craniofac Surg. 2009;20(6):2193–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface. 2009;6(30):1–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ye Q, Zund G, Benedikt P, Jocknhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000;17(5):587–91.

    Article  CAS  PubMed  Google Scholar 

  39. Isaacson G, Herman JH. Autologous plasma fibrin glue: Rapid preparation. Am J Otolaryngol. 1996;17(2):92–4.

    Article  CAS  PubMed  Google Scholar 

  40. Quick AJ. Hemorrhagic diseases and thrombosis. 2nd ed. Philadelphia: Lee and Febiger; 1966. p. 442.

    Google Scholar 

  41. Abedin M, Tintut Y, Demer LL. Mesenchymal stem cells and the artery wall. Circ Res. 2004;95(7):671–7.

    Article  CAS  PubMed  Google Scholar 

  42. Efstratiadis G, Nikolaidou C, Vergoulas G. Leptin as a cardiovascular risk factor. Hippokratia. 2007;11(4):163–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol. 2007;27(5):996–1003.

    Article  CAS  PubMed  Google Scholar 

  44. Jakob F, Limbert C, Schilling T, Benisch P, Seefried L, Ebert R. Biology of mesenchymal stem cells. Curr Rheumatol Rev. 2008;4:148–54.

    Article  CAS  Google Scholar 

  45. Johnson RG, Leopold JA, Lo Scalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 2006;99(10):1044–59.

    Article  CAS  PubMed  Google Scholar 

  46. Jono S, Nishizawa Y, Shioi A, Morii H. 1,25-Dihydroxyvitamin D3 increases in vitro vascular calcification by modulating secretion of endogenous parathyroid hormone-related peptide. Circulation. 1998;98(13):1302–6.

    Article  CAS  PubMed  Google Scholar 

  47. Reinders MEJ, Rabelink TJ. Adipose tissue derived stem cells: can impure cell preparation give pure results? Nephrol Dial Transplant. 2010;25(12):1–3.

    Article  Google Scholar 

  48. Stompor T. An overview of the pathophysiology of vascular calcification in chronic kidney disease. Perit Dial Int. 2007;27 Suppl 2:215–22.

    Google Scholar 

  49. Van Campenhout A, Moran CS, Parr A, Clancy P, Rush C, Jakubowski H, Golledge J. Role of homocysteine in aortic calcification and osteogenic cell differentiation. Atherosclerosis. 2009;202(2):557–66.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Pawitan JA. Prospect of adipose tissue derived mesenchymal stem cells in regenerative medicine. Cell Tissue Transplant Ther. 2009;2:7–9.

    Google Scholar 

  51. Gomillion CT, Burg KJL. Stem cells and adipose tissue engineering. Biomaterials. 2006;27(36):6052–63.

    Article  CAS  PubMed  Google Scholar 

  52. Rebellatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligowski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldbenberg S, Nakao LS, Correa A. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood and adipose tissue. Exp Biol Med (Maywood). 2008;233(7):901–13.

    Article  Google Scholar 

  53. Einhorn TA. Enhancement of fracture healing. J Bone Joint Surg Am. 1995;77(6):940–56.

    CAS  PubMed  Google Scholar 

  54. O’Brien FJ, Farrell E, Waller MA, Connell I, O’Mahoney D, McGarry JP, Murphy BP, McHugh P, Campbell VA, Prendergast PJ. Scaffolds and cells: preliminary biomechanical analysis and results for the use of a collagen gag scaffold for bone tissue engineering. In: Prendergast PJ, McHugh PE, editors. Topics in bio-mechanical engineering. Dublin: Trinity Centre for Bio-Engineering (TCBE)/The National Centre for Biomedical Engineering Science (NCBES); 2004. p. 167–83.

    Google Scholar 

  55. Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci Mater Med. 2009;20(6):1273–80.

    Article  CAS  PubMed  Google Scholar 

  56. Georgiadis AN, Papavasiliou EC, Lourida ES, Alamanos Y, Kostara C, Tselepis AD, Drosos AA. Atherogenic lipid is a feature characteristic of patients with early rheumatoid arthritis: effect of early treatment a prospective, controlled study. Arthritis Res Ther. 2005;8(3):R82.

    Article  Google Scholar 

  57. Mori K, Shioi A, Jono S, Nishizawa Y, Morii H. Dexamethasone enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999;19(2):2112–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toai Cong Tran M.D., Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tran, T.C., Gargiulo, C., Huynh, T.D., Bui, K.H.T., Filgueira, L., Strong, D.M. (2014). Adipocytes and Osteoblasts from Human Adipose Tissue Mesenchymal Stem Cells for the Production of Compatible and Safe Biomaterial Crucial in Cosmetic, Reconstructive, and Regenerative Medicine. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics