Skip to main content

In-situ Transmission Electron Microscopy

  • Chapter
  • First Online:
Book cover In-situ Materials Characterization

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 193))

Abstract

Transmission electron microscopy (TEM) has hit a significant milestone of sub-angstrom resolution. On one hand, electron microscopists and materials scientists are enjoying the highest TEM spatial resolution ever attainable; on the other hand, study of materials in a steady state is hard to meet the increasing demand in new application fields such as nanocatalysts, nanocrystal growth, nanoelectronics, nanosensors, and nanomechanics in which size effect and structural or property responses to stimuli from the surrounding environment are key information to learn. Special attention is thus paid to in-situ TEM. A great deal of effort in developing and improving electron microscopes and specimen holders have resulted in unprecedented progresses in attaining insight into materials in dynamic environments. In many ways, transmission electron microscopes are now functionalized as workstations or nanoscale labs rather than just imaging tools. In this chapter, various types of in-situ TEM technologies are introduced accompanied by application examples. In parallel to the sub-angstrom breakthrough made by the aberration-corrected TEM, atomic resolution is now emphasized in advanced in-situ TEM, advancement on this aspect will be discussed together with other important notes and further challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NSF Workshop Report on Dynamic in situ electron microscopy as a tool to meet the challenges of the nanoworld, January 3–6, 2006, The Buttes, Tempe, Arizona

    Google Scholar 

  2. B.J. Ford, The Leeuwenhoek Legacy (Biopress, Bristol, 1991)

    Google Scholar 

  3. E. Ruska, Beitrag zur übermikroskopischen Abbildung bei höheren Drucken. Kolloid Z. 100, 212 (1942)

    Article  Google Scholar 

  4. J. Silcox, M.J. Whelan, Direct observations of the annealing of prismatic dislocation loops and of climb of dislocations in quenched aluminum. Philos. Mag. 5, 1 (1960)

    Article  ADS  Google Scholar 

  5. N.H. Packan, D.N. Braski, Electron microscope in situ annealing study of voids induced by irradiation in aluminum. J. Nucl. Mater. 34, 307 (1970)

    Article  ADS  Google Scholar 

  6. R.T.K. Baker, In situ electron microscopy studies of catalyst particle behavior. Catal. Rev. 19, 161 (1979)

    Article  Google Scholar 

  7. ASU electron microscopy workshop. Microsc. Microanal. 4 (1998)

    Google Scholar 

  8. X.F. Zhang, L.C. De Jonghe, Thermal modification of microstructures and grain boundaries in silicon carbide. J. Mater. Res. 18(12), 2807 (2003)

    Article  ADS  Google Scholar 

  9. M. Law, X.F. Zhang, R. Yu, T. KuyKendall, P. Yang, Thermally driven interfacial dynamics of metal/oxide bilayer nanoribbons. Small 1, 1 (2005)

    Article  Google Scholar 

  10. R. Yu, H. Song, X.F. Zhang, P. Yang, Thermal wetting of platinum nanocrystals on silica surface. J. Phys. Chem. B 109, 6940 (2005)

    Article  Google Scholar 

  11. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, M. Ruhle, Ordered liquid aluminum at the interface with sapphire. Science 310, 661 (2005)

    Article  ADS  Google Scholar 

  12. S.K. Eswaramoorthy, J.M. Howe, G. Muralidharan, In situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science 318, 1437 (2007)

    Article  ADS  Google Scholar 

  13. V.C. Holmberg, M.G. Panthani, B.A. Korgel, Phase transitions, melting dynamics, and solid-state diffusion in a nano test tube. Science 326, 405 (2009)

    Article  ADS  Google Scholar 

  14. T. Kamino, H. Saka, A newly developed high resolution hot stage and its application to materials characterization. Microsc. Microanal. Microstruct. 4, 127 (1993)

    Article  Google Scholar 

  15. T. Kamino, T. Yaguchi, H. Saka, In situ study of chemical reaction between silicon and graphite at 1,400°C in a high resolution/analytical electron microscope. J. Electron Microsc. (Tokyo), 43, 104 (1994)

    Google Scholar 

  16. T. Kamino, H. Saka, In-situ HREM heating experiments at very high temperatures. Mat. Res. Soc. Symp. Proc. 404, 19 (1996)

    Article  Google Scholar 

  17. S. Tsukimoto, S. Arai, M. Konno, T. Kamino, K. Sasaki, H. Saka, In situ high resolution electron microscopy/electron energy loss spectroscopy observation of wetting of a Si surface by molten Al. J. Microsc. 203, 17 (2001)

    Article  MathSciNet  Google Scholar 

  18. J.G. Lee, H. Mori, In-situ observation of alloy phase formation in nanometre-sized particles in the Sn-Bi system. Philos. Mag. 84, 2675 (2004)

    Article  ADS  Google Scholar 

  19. T. Kamino, T. Yaguchi, M. Konno, T. Hashimoto, In situ high temperature TEM observation of interaction between multi-walled carbon nanotube and in situ deposited gold nano-particles. J. Electron Microsc. 54, 461 (2005)

    Article  Google Scholar 

  20. T. Kamino, T. Yaguchi, T. Sato, T. Hashimoto, Development of a technique for high resolution electron microscopic observation of nano-materials at elevated temperatures. J. Electron Microsc. 54, 505 (2005)

    Article  Google Scholar 

  21. T. Akita, K. Tanaka, M. Kohyama, M. Haruta, Analytical TEM study on structural changes of Au particles on cerium oxide using a heating holder. Catal. Today 122, 233 (2007)

    Article  Google Scholar 

  22. H. Saka, T. Kamino, S. Arai, K. Sasaki, In situ heating transmission electron microscopy. MRS Bull. 33, 93 (2008)

    Article  Google Scholar 

  23. T. Tanigagaki, K. Ito, Y. Nagakubo, T. Asakawa, T. Kanemura, An in situ heating TEM analysis method for an interface reaction. J. Electron Microsc. 58, 281 (2009)

    Article  Google Scholar 

  24. T. Kamino, T. Yaguchi, M. Lonno, A. Watabe, Y. Nagakubo, Development of a specimen heating holder with an evaporator and gas injector and its application for catalyst. J. Electron Microsc. 55, 245 (2006)

    Article  Google Scholar 

  25. L.F. Allard, W.C. Biglow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, S. Mick, A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Technol. 72, 208 (2009)

    Article  Google Scholar 

  26. Private communication with Fischione Instruments

    Google Scholar 

  27. T. Kamino, T. Yaguchi, M. Konno, A. Watabe, T. Marukawa, T. Mima, K. Kuroda, H. Saka, S. Arai, H. Makino, Y. Suzuki, K. Kishita, Development of a gas injection/specimen heating holder for use with transmission electron microscope. J. Electron Microsc. 54, 497 (2005)

    Article  Google Scholar 

  28. A. Tonomura, Direct observation of thitherto unobservable quantum phenomena by using electrons. PNAS 102, 14952 (2005)

    Article  ADS  Google Scholar 

  29. J. Frank, Electron Tomography—Three Dimensional Imaging with the Transmission Electron Microscope (Plenum Press, New York, 1992)

    Google Scholar 

  30. K. Dierksen, D. Typke, R. Hegerl, A.J. Koster, W. Baumeister, Towards automatic electron tomography. Ultramicroscopy 40, 71 (1992)

    Article  Google Scholar 

  31. K.H. Downning, H. Sui, M. Auer, Electron tomography: a 3D view of the subcellular world. Anal. Chem. 11, 7949 (2007)

    Article  Google Scholar 

  32. A.M. Glauert, The high voltage electron microscope in biology. J. Cell Biol. 63, 717 (1974)

    Article  Google Scholar 

  33. L. Marton, Bull. Acad. R. Belg. C1. Sci. 21, 553 (1935)

    Google Scholar 

  34. E.P. Butler, K.F. Hale, Dynamic Experiments in the Electron Microscope (North-Holland, Amsterdam, 1981)

    Google Scholar 

  35. T. Yaguchi, A. Watanabe, Y. Nagakubo, K. Ueda, M. Fukui, T. Kamino, T. Kawasaki, Development of gas environmental cells for in situ TEM applications, in Proceedings of Microscopy and Microanalysis Annual Meeting, 8/1-5, 2010, Portland

    Google Scholar 

  36. M.J. Flower, High voltage electron microscopy of environmental reactions. J. Microsc. 97, 171 (1973)

    Article  Google Scholar 

  37. P.R. Swann, N.J. Tighe, Jernkont. Annlr. 155, 251 (1971)

    Google Scholar 

  38. P.R. Swann, N.J. Tighe, Performance of differentially pumped environmental cell in the AE1 EM7, in Proceeding of 5th European Congress on Electron Microscopy, Manchester (1972), p. 360

    Google Scholar 

  39. P.R. Swann, High voltage microscope studies of environmental reaction, in Electron Microscopy and Structure of Materials, ed. by G. Thomas, R. Fulrath, R.M. Fisher (University of California Press, Berkeley, 1972), p. 878

    Google Scholar 

  40. T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson, H.K. Birnbaum, An environmental cell transmission electron microscopy. Rev. Sci. Instrum. 62, 1438 (1991)

    Article  ADS  Google Scholar 

  41. E.D. Boyes, P.L. Gai, Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219 (1997)

    Article  Google Scholar 

  42. R. Sharma, K. Weiss, Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc. Res. Techniq. 42, 270 (1998)

    Article  Google Scholar 

  43. P.L. Gai, E.D. Boyes, S. Helveg, P.L. Hansen, S. Giorgio, C.R. Henry, Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 32, 1044 (2007)

    Article  Google Scholar 

  44. K. Kishita, H. Sakai, H. Tanaka, H. Saka, K. Kuroda, M. Sakamoto, A. Watabe, T. Kamino, Development of an analytical environmental TEM system and its application. J. Electron. Microsc. 58, 331 (2009)

    Article  Google Scholar 

  45. P.L. Gai, R. Sharma, F.M. Ross, Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull. 33, 107 (2008)

    Article  Google Scholar 

  46. X.F. Zhang, T. Kamino, Imaging gas-solid interactions in an atomic resolution environmental TEM. Microsc. Today 14, 16 (2006)

    Google Scholar 

  47. X.F. Zhang, In-situ gas-heating and real-time 3D imaging: Hitachi H-9500 transmission electron microscope. Am. Lab. 40, 27 (2008)

    Google Scholar 

  48. P.A. Crozier, R. Sharma, A.K. Datye, Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 4, 278 (1998)

    Article  ADS  Google Scholar 

  49. T.W. Hansen, J.B. Wagner, P.L. Hansen, S. Dahl, H. Topsee, C.J.H. Jacobsen, Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001)

    Article  ADS  Google Scholar 

  50. S. Helveg, C. Lopez-Cartes, J. Hehested, P.L. Hansen, B.S. Calusen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nerskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426 (2004)

    Article  ADS  Google Scholar 

  51. J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006)

    Article  ADS  Google Scholar 

  52. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Germanium nanowire growth below the eucentric temperature. Science 316, 729 (2007)

    Article  ADS  Google Scholar 

  53. B.J. Kim, J. Tersoff, S. Kodambaka, M.C. Reuter, E.A. Stach, F.M. Ross, Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 322, 1070 (2008)

    Article  ADS  Google Scholar 

  54. S. Hofmann, R. Sharma, C.T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R.E. Dunin-Borkowski, J. Drucker, P. Bennett, J. Robertson, Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat. Mater. 7, 372 (2008)

    Article  ADS  Google Scholar 

  55. V.P. Oleshko, P.A. Crozier, R.D. Cantrell, A.D. Westwood, J. Electron Microsc. 51(supplement), S27 (2002)

    Article  Google Scholar 

  56. R. Sharma, P. Rez, M. Brown, G.H. Du, M.M.J. Treacy, Nanotechnology 18, 125602 (2007)

    Article  ADS  Google Scholar 

  57. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban, Nature 392, 768 (1998)

    Article  ADS  Google Scholar 

  58. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini, J. Electron Microsc. (Tokyo) 50, 177 (2001)

    Google Scholar 

  59. I.M. Abrams, J.W. McBain, Science 100, 273 (1944)

    Google Scholar 

  60. I.M. Abrams, J.W. McBain, J. Appl. Phys. 15, 607 (1944)

    Google Scholar 

  61. R.T. Joy, The electron microscopical observation of aqueous biological systems. Adv. Opt. Electron Microsc. 5, 297 (1973)

    Google Scholar 

  62. D.F. Parsons, Environmental wet cells for biological medium voltage and high voltage electron microscopy, in Electron Microscopy (1973)

    Google Scholar 

  63. B. Siegel (ed.), in Physical Aspects (Wiley, New York, 1974)

    Google Scholar 

  64. D.F. Parsons, Structure of wet specimens in electron microscopy. Science 186, 407 (1974)

    Article  ADS  Google Scholar 

  65. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532 (2003)

    Article  ADS  Google Scholar 

  66. H. Zheng, R.K. Smith, Y. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos, Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309 (2009)

    Article  ADS  Google Scholar 

  67. H. Liao, L. Cui, S. Whitelam, H. Zheng, Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011 (2012)

    Article  ADS  Google Scholar 

  68. J.D. Li, M.H. Nielsen, J.R. Lee, C. Frandsen, J.F. Banfield, J. De Yoreo, Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014 (2012)

    Article  ADS  Google Scholar 

  69. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A. Alivisatos, High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61 (2012)

    Article  ADS  Google Scholar 

  70. N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA 106(7), 2159–2164 (2009). Epub 2009 Jan 21

    Google Scholar 

  71. D.B. Peckys, G.M. Veith, D.C. Joy, N. de Jonge, Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. Plos One 4, e8214 (2009)

    Google Scholar 

  72. R.C. Moretz, G.G. Hausner, JR., D.F. Parsons, in Proceedings of the 29 th Annual Meeting of the Electron Microscopy Society of America, Boston, ed. by C.J. Arceneaux (Claitor’s, Baton Rouge, 1971), p. 544

    Google Scholar 

  73. S.W. Hui, D.F. Parsons, in Proceedings of the 31th Annual Meeting of the Electron Microscopy Society of America, New Orleans, ed. by C.J. Arceneaux (Claitor’s, Baton Rouge, 1973), p. 340

    Google Scholar 

  74. P.L. Gai, Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21 (2002)

    Article  ADS  Google Scholar 

  75. P.W. Sutter, E.A. Sutter, Dispensing and surface-induced crystallization of aeptolitre liquid metal-alloy drops. Nat. Mater. 6, 363 (2007)

    Article  ADS  Google Scholar 

  76. J.Y. Huang, S. Ceh, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, Z.F. Ren, Superplastic carbon nanotubes. Nature 439, 281 (2006)

    Article  ADS  Google Scholar 

  77. J.Y. Huang, S. Chen, Z.F. Ren, Z. Wang, K. Kempa, M.J. Naughton, G. Chen, M.S. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures. Phys. Rev. Lett. 98, 185501-1 (2007)

    ADS  Google Scholar 

  78. J.Y. Huang, S. Chen, Z.F. Ren, G. Chen, M.S. Dresselhaus, Real-time observation of tubule formation from amorphous carbon nanowires under high-bias Joule heating. Nano Lett. 6, 1699 (2006)

    Article  ADS  Google Scholar 

  79. B.C. Regan, S. Aloni, R.O. Ritchie, U. Dahmen, A. Zettl, Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924 (2004)

    Article  ADS  Google Scholar 

  80. A. Barreiro, R. Rurali, E.R. Hernandez, J. Moser, T. Pichler, L. Forro, A. Bachtold, Subnanometer motion of cargoes driven by thermal gradiants along carbon nanotubes. Science 320, 775 (2008)

    Article  ADS  Google Scholar 

  81. J. Cumings, P.G. Collins, A. Zettl, Peeling and sharpening multiwall nanotubes. Nature 406, 586 (2000)

    Article  ADS  Google Scholar 

  82. J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602 (2000)

    Article  ADS  Google Scholar 

  83. P. Gao, Z. Kang, W. Fu, W. Wang, X. Bai, E. Wang, Electrically driven redox process in cerium oxides. J. Am. Chem. Soc. 132, 4197 (2010)

    Article  Google Scholar 

  84. P. Poncharal, C. Berger, Y. Yi, Z.L. Wang, W.A. de Heer, Room temperature ballistic conduction in carbon nanotubes. J. Phys. Chem. B 106, 12104 (2002)

    Article  Google Scholar 

  85. M.S. Wang, J. Wang, Q. Chen, L.M. Peng, Fabrication and electrical and mechanical properties of carbon nanotube interconnections. Adv. Funct. Mater. 15, 1825 (2005)

    Article  Google Scholar 

  86. M.S. Wang, L.M. Peng, J.Y. Wang, Q. Chen, Shaping carbon nanotubes and effects on their electrical and mechanical properties. Adv. Funct. Mater. 16, 1462 (2006)

    Article  Google Scholar 

  87. K.H. Liu, P. Gao, Z. Xu, X.D. Bai, E.G. Wang, In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope. Appl. Phys. Lett. 92, 213105-1 (2008)

    ADS  Google Scholar 

  88. M.S. Wang, Q. Chen, L.M. Peng, Field-emission characteristics of individual carbon nanotubes with a conical tip: the validity of the Fowler-Nordheim theory and maximum emission current. Small 4, 1907 (2008)

    Article  Google Scholar 

  89. M.S. Wang, Q. Chen, L.M. Peng, Grinding a nanotube. Adv. Mater. 20, 724 (2008)

    Article  Google Scholar 

  90. A.N. Chiaramonti, L.J. Thompson, W.F. Egelhoff, B.C. Kabius, A.K. Petford-Long, In situ TEM studies of local transport and structure in nanoscale multilayer films. Ultramicroscopy 108, 1529 (2008)

    Article  Google Scholar 

  91. A.N. Chiaramonti, D.K. Schreiber, W.F. Egelhoff, D.N. Seidman, A.K. Petford-Long, Effects of annealing on local composition and electrical transport correlations in MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 93, 103113-1 (2008)

    Article  ADS  Google Scholar 

  92. J.W. Lau, P. Morrow, J.C. Read, V. Höink, W.F. Egelhoff, L. Huang, Y. Zhu, In situ tunneling measurements in a transmission electron microscope on nanomagnetic tunnel junctions. Appl. Phys. Lett. 96, 262508-1 (2010)

    ADS  Google Scholar 

  93. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010)

    Article  ADS  Google Scholar 

  94. T. Fujieda, K. Hidaka, M. Hayashibara, T. Kamino, H. Matsumoto, Y. Ose, H. Abe, T. Shimizu, H. Tokumoto, In situ observation of field emission from an individual carbon nanotube by Lorenz microscopy. Appl. Phys. Lett. 85, 5739 (2004)

    Article  ADS  Google Scholar 

  95. T. Fujieda, K. Hidaka, M. Hayashibara, T. Kamino, Y. Ose, H. Abe, T. Shimizu, H. Tokumoto, Direct observation of field emission sites in the single multiwalled carbon nanotube by Lorenz microscopy. Jpn. J. Appl. Phys. 44, 1661 (2005)

    Article  ADS  Google Scholar 

  96. T. Fujieda, M. Okai, K. Hidaka, H. Matsumoto, H. Tokumoto, Behavior of catalyst particle at tip of carbon nanotube during field emission. Appl. Phys. Express 1, 014002-1 (2008)

    Article  ADS  Google Scholar 

  97. K. Liu, W. Wang, Z. Xu, X. Bai, E. Wang, Y. Yao, J. Zhang, Z. Liu, Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 131, 62 (2009)

    Article  Google Scholar 

  98. Z.W. Shan, G. Adesso, A. Cabot, M.P. Sherburne, S.A. Syed Aasif, O.L. Warren, D.C. Chrzan, A.M. Minor, A.P. Alivisatos, Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat. Mater. 7, 947 (2008)

    Google Scholar 

  99. N. Gane, F.P. Bowden, J. Appl. Phys. 39, 1432 (1968)

    Article  ADS  Google Scholar 

  100. N. Gane, Proc. R. Soc. Lond. Ser. A 317, 367 (1970)

    Article  ADS  Google Scholar 

  101. M. Legros, D.S. Gianola, C. Motz, Quantitative in situ mechanical testing in electron microscopes. MRS Bull. 35, 354 (2010)

    Article  Google Scholar 

  102. P. Poncharal, Z.L. Wang, D. Ugart, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999)

    Article  ADS  Google Scholar 

  103. H.G.F. Wilsdorf, ASTM Spec. Technol. 245, 43 (1958)

    Google Scholar 

  104. U. Messerschmidt, F. Appel, Ultramicroscopy 1, 223 (1976)

    Article  Google Scholar 

  105. E.P. Butler, Rep. Prog. Phys. 42, 833 (1979)

    Article  ADS  Google Scholar 

  106. I.M. Robertson, P.J. Ferreira, G. Dehm, R. Hull, E.A. Stach, Visualizing the behavior of dislocations—seeing is believing. MRS Bull. 33, 122 (2008)

    Article  Google Scholar 

  107. I.M. Robertson, H.K. Birnbaum, P. Sofronis, Hydrogen effects on plasticity, in Dislocations in Solids, ed. by J. P. Hirth, L. Kubin (Elsevier B.V, Netherlands, 2009), pp. 249–293

    Google Scholar 

  108. Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004)

    Article  ADS  Google Scholar 

  109. Z.W. Shan, J.M.K. Wiezorek, E.A. Stach, D.M. Follstaedt, J.A. Knapp, S.X. Mao, Dislocation dynamics in nanocrystalline nickel. Phys. Rev. Lett. 98, 095502-1 (2007)

    Article  ADS  Google Scholar 

  110. Z.W. Shan, J.A. Knapp, D.M. Follstaedt, E.A. Stach, J.M.K. Wiezorek, S.X. Mao, Inter- and intra-agglomerate fracture in nanocrystalline nickel. Phys. Rev. Lett. 100, 105502-1 (2008)

    Article  ADS  Google Scholar 

  111. M.A. Haque, H.D. Espinosa, H.J. Lee, MEMS for in situ testing—Handling, actuation, loading, and displacement measurements. MRS Bull. 35, 375 (2010)

    Article  Google Scholar 

  112. B. Peng, M. Locascio, P. Zapol, S.Y. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3, 626 (2008)

    Article  Google Scholar 

  113. M. Locascio, B. Peng, P. Zapol, Y. Zhu, S.Y. Li, S.L. Mielke, T. Belytschko, H.D. Espinosa, Exp. Mech. 49, 169 (2009)

    Article  Google Scholar 

  114. Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, A.M. Minor, Mechanical annealing and source-limited deformation in submicrometer-diameter Ni crystals. Nat. Mater. 7, 115 (2007)

    Article  ADS  Google Scholar 

  115. M.S. Wang, I. Kaplan-Ashirl, X.L. Wei, R. Rosentsveig, H.D. Wagner, R. Tenne, L.M. Peng, In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Res. 1, 22 (2008)

    Article  Google Scholar 

  116. Q. Yu, Z.W. Shan, J. Li, X.X. Huang, L. Xiao, J. Sun, E. Ma, Strong crystal size effect on deformation twinning. Nature 463, 335 (2010)

    Article  ADS  Google Scholar 

  117. X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang, Z.L. Wang, Low temperature in situ large strain plasticity of silicon nanowires. Adv. Mater. 19, 2112 (2007)

    Article  Google Scholar 

  118. Y.F. Zhang, X.D. Han, K. Zheng, Z. Zhang, X.N. Zhang, J.Y. Fu, Y. Ji, Y.J Hao, X.Y. Guo, Z.L. Wang, Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv. Funct. Mater. 17, 3435 (2007)

    Google Scholar 

  119. K. Zheng, C.C. Wang, Y.Q. Cheng, Y.H. Yue, X.D. Han, Z. Zhang, Z.W. Shan, S.X. Mao, M.M. Ye, Y.D. Yin, E. Ma, Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 1 (2010)

    Article  Google Scholar 

  120. X.D. Han, Y.F. Zhang, K. Zheng, X.N. Zhang, Z. Zhang, Y.J. Hao, X.Y. Guo, J. Yuan, Z.L. Wang, Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Nano Lett. 7, 452 (2007)

    Article  ADS  Google Scholar 

  121. K. Zheng, X.D. Han, L.H. Wang, Y.H. Yue, Y.F. Zhang, Y. Qin, X.N. Zhang, Z. Zhang, Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9, 2471 (2009)

    Article  ADS  Google Scholar 

  122. X.D. Han, Y.F. Zhang, X.Q. Liu, Z. Zhang, Y.J. Hao, X.Y. Guo, Lattice bending, disordering and amorphization induced plastic deformation in a SiC nanowire. J. Appl. Phys. 98, 124307-1 (2005)

    ADS  Google Scholar 

  123. J.H. Wang, S. Yip, S.R. Phillpot, D. Wolf, Crystal instabilities at finite strain. Phys. Rev. Lett. 71, 4182 (1993)

    Article  ADS  Google Scholar 

  124. L. Sun, F. Banhart, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, M. Terrones, P.M. Ajayan, Carbon nanotubes as high pressure cylinders and nanoextruders. Science 312, 1199 (2006)

    Article  ADS  Google Scholar 

  125. J. Cumings, E. Olsson, A.K. Petford-Long, Y. Zhu, Electric and magnetic phenomena studied by in situ transmission electron microscopy. MRS Bull. 33, 101 (2008)

    Google Scholar 

  126. C. Tsuruta, T. Kamino, H. Sato, Observation of magnetic domain in cobalt thin foil, Hitachi Technical Data, Sheet No. 51

    Google Scholar 

  127. T. Hirayama, Q. Ru, T. Tanji, A. Tonomura, Observation of magnetic-domain states of barium ferrite particles by electron holography. Appl. Phys. Lett. 63, 418 (1993)

    Article  ADS  Google Scholar 

  128. J.J. Kim, A. Tonomura, K. Hirata, Y. Ishida, D. Shindo, M. Takahashi, Magnetic domain observation in writer pole tip for perpendicular recording head by electron holography. Appl. Phys. Lett. 92, 162501 (2008)

    Article  ADS  Google Scholar 

  129. A. Sugawara, K. Fukunaga, M.R. Scheinfein, H. Kobayashi, H. Kitagawa, A. Tonomura, Electron holography study of the temperature variation of the magnetic order parameter within circularly nickel nanoparticle rings. Appl. Phys. Lett. 91, 262513 (2007)

    Article  ADS  Google Scholar 

  130. A. Sugawara, T. Akashi, P.D. Brown, R.P. Campion, T. Yoshida, B.L. Gallagher, A. Tonomura, High-resolution observations of temperature-dependent magnetic domain structures within GaxMn1-xAs by Lorentz microscopy. Phys. Rev. B 75, 241306-1 (2007)

    Article  ADS  Google Scholar 

  131. K. Fukunaga, A. Sugawara, Anisotropic cross-tie wall and their confinement in self organized undulating Fe film. J. Appl. Phys. 103, 053909 (2008)

    Article  ADS  Google Scholar 

  132. A. Sugawara, H. Kasai, A. Tonomura, P.D. Brown, R.P. Campion, K.W. Edmonds, B.L. Gallagher, J. Zemen, T. Jungwirth, Domain walls in the (Ga, Mn) As diluted magnetic semiconductor. Phys. Rev. Lett. 100, 047202 (2008)

    Article  ADS  Google Scholar 

  133. A.C. Twitchett, R.E. Dunin-Borkoski, P.A. Midgley, Philos. Mag. 86, 5805 (2006)

    Article  ADS  Google Scholar 

  134. A. Tonomura, The Quantum World Unveiled by Electron Waves (World Scientific, Singapore, 2008)

    Google Scholar 

  135. H. Lichte, M. Lehmann, Electron holography—basics and applications. Rep. Prog. Phys. 70, 1 (2007)

    Article  Google Scholar 

  136. R.E. Dunin-Boekowski, T. Kasama, A. Wei, S.L. Tripp, M.J. Hytch, E. Snoeck, R.J. Harrison, A. Putnis, Off-axis electron holography of magnetic nanowires and chains, rings, and plannar arrays of magnetic nanoparticles. Microsc. Res. Technol. 64, 390 (2004)

    Article  Google Scholar 

  137. Y. Togawa, K. Harada, T. Akashi, H. Kasai, T. Matsuda, F. Nori, A. Maeda, A. Tonomura, Direct observation of rectified motion of vortices in a niobium superconductor. Phys. Rev. Lett. 95, 087002 (2005)

    Article  ADS  Google Scholar 

  138. Y. Togawa, T. Kimura, K. Harada, T. Akashi, T. Matsuda, A. Tonomura, Y. Otani, Current-excited magnetization dynamics in narrow ferromagnetic wires. Jpn. J. Appl. Phys. (Express) 45, L683 (2006)

    Article  ADS  Google Scholar 

  139. Y. Togawa, T. Kimura, K. Harada, T. Akashi, T. Matsuda, A. Tonomura, Y. Otani, Current-excited magnetization reversal under in-plane magnetic field in a nano-scaled ferromagnetic wire. Appl. Phys. Lett. 92, 012505 (2008)

    Article  ADS  Google Scholar 

  140. Y. Togawa, K. Harada, T. Akashi, H. Kasai, T. Matsuda, A. Maeda, A. Tonomura, Rectified motion of vortices in a niobium superconductor observed by Lorentz microscopy. Physica C 426–431, 141 (2005)

    Article  Google Scholar 

  141. A. Tonomura, H. Kasai, O. Kamimura, T. Matsuda, K. Harada, T. Yoshida, T. Akashi, J. Shimoyama, K. Kishio, T. Hanaguri, K. Kitazawa, T. Masui, S. Tajima, N. Koshizuka, P.L. Gammel, D. Bishop, M. Sasase, S. Okayasu, Observation of structures of chain vortices inside anisotropic high-Tc superconductors. Phys. Rev. Lett. 88, 237001 (2002)

    Article  ADS  Google Scholar 

  142. R.E. Dunin-Borkowski, M.R. McCartney, D.J. Smith, S.S.P. Parkin, Towards quantitative electron holography of magnetic thin films using in situ magnetization reversal. Ultramicroscopy 74, 61 (1998)

    Article  Google Scholar 

  143. J.W. Lau, M. Beleggia, M.A. Schofield, G.F. Neumark, Y. Zhu, Direct correlation of reversal rate dynamics to domain configurations in micron-sized permalloy elements. J. Appl. Phys. 97, 10E702-1 (2005)

    Google Scholar 

  144. J.W. Lau, M. Beleggia, Y. Zhu, Common reversal mechanisms and correlation between transient domain states and field sweep rate in patterned Permalloy structures. J. Appl. Phys. 102, 043906-1 (2007)

    ADS  Google Scholar 

  145. Z. Akase, D. Shindo, In situ Lorentz microscopy in an alternating magnetic field. J. Electron Microsc. 59, 207 (2010)

    Article  Google Scholar 

  146. A. Lenk, H. Lichte, U. Muehle, J. Electron Microsc. 54, 351 (2005)

    Article  Google Scholar 

  147. S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi, Phys. Rev. Lett. 55, 2196 (1985)

    Article  ADS  Google Scholar 

  148. W.D. Rau, P. Schwander, F.H. Baumann, W. Hoppner, A. Ourmazd, Phys. Rev. Lett. 82, 2614 (1999)

    Article  ADS  Google Scholar 

  149. A.C. Twitchett, R.E. Dunin-Bokowski, P.A. Midgley, Phys. Rev. Lett. 88, 238302 (2002)

    Article  ADS  Google Scholar 

  150. A.C. Twitchett, R.E. Dunin-Bokowski, R.F. Broom, P.A. Midgley, J. Phys. Condens. Matter 16, S181 (2004)

    Article  ADS  Google Scholar 

  151. A.C. Twitchett-Harrison, T.J.V. Yates, S.B. Newcomb, R.E. Dunin-Borkowski, P.A. Midgley, Nano Lett. 7, 2020 (2007)

    Article  ADS  Google Scholar 

  152. A.C. Twitchett, R.E. Dunin-Borkowski, R.J. Hallifax, R.F. Broom, P.A. Midgley, Microsc. Microanal. 11, 1 (2005)

    Article  Google Scholar 

  153. X. Portier, E.Y. Tsymbal, A.K. Petford-Long, T.C. Anthony, J.A. Brug, Phys. Rev. B. 58, R591 (1998)

    Article  ADS  Google Scholar 

  154. F. Junginger, M. Klaui, D. Backes, U. Rudiger, T. Kasama, R.E. Dunin-Borkoski, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland, Appl. Phys. Lett. 90, 132506 (2007)

    Article  ADS  Google Scholar 

  155. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, S.P. Parkin, Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209 (2008)

    Article  ADS  Google Scholar 

  156. L. Huang, M.A. Schofield, Y. Zhu, Direct observation of the controlled magnetization reversal processes in Py/Al/Py asymmetric ring stacks. Appl. Phys. Lett. 95, 042501-1 (2009)

    ADS  Google Scholar 

  157. L. Huang, M.A. Schofield, Y. Zhu, Control of double-vortex domain configurations in a shape-engineered trilayer nanomagnet system. Adv. Mater. 22, 492 (2010)

    Article  Google Scholar 

  158. T. Uhlig, M. Heumnann, J. Zweck, Development of a specimen holder for in situ generation of pure in-plane magnetic fields in a transmission electron microscope. Ultramicroscopy 94, 193 (2003)

    Article  Google Scholar 

  159. M. Inoue, T. Tomita, M. Naruse, Z. Aakase, Y. Murakami, D. Shindo, Development of a magnetizing stage for in situ observations with electron holography and Lorentz microscopy. J. Electron Microsc. 54, 509 (2005)

    Article  Google Scholar 

  160. J.W. Lau, J.K. Bording, M. Beleggia, Y. Zhu, Energy barrier to magnetic vortex nucleation. Appl. Phys. Lett. 88, 012508-1 (2006)

    ADS  Google Scholar 

  161. L. Huang, Y. Zhu, Controlled reversal of coupled Néel walls in flux-closure magnetic trilayer elements. Appl. Phys. Lett. 95, 222502-1 (2009)

    ADS  Google Scholar 

  162. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010)

    Article  ADS  Google Scholar 

  163. D. Shindo, Y.G. Park, Y. Gao, H.S. Park, Electron holography of Fe-based nanocrystalline magnetic materials. J. Appl. Phys. 95, 6521 (2004)

    Article  ADS  Google Scholar 

  164. H.S. Park, Y.G. Park, Y. Gao, D Shindo, M. Inoue, Direct observation of magnetization reversal in thin Nd2Fe14B film. J. Appl. Phys. 97, 033908 (2005)

    Google Scholar 

  165. J.W. Lau, M.A. Schofield, Y. Zhu, A straightforward specimen holder modification for remnant magnetic-field measurement in TEM. Ultramicroscopy 107, 396 (2007)

    Article  Google Scholar 

  166. J. Cumings, A. Zettl, M.R. McCartney, J.C.H. Spence, Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804-1 (2002)

    Article  ADS  Google Scholar 

  167. J. Cumings, A. Zettl, M.R. McCartney, Carbon nanotube electrostatic biprism: principle of operation and proof of concept. Microsc. Microanal. 10, 420 (2004)

    Article  ADS  Google Scholar 

  168. D.W. Pashley, A.E.B. Presland, Ion damage to metal films inside an electron microscope. Philos. Mag. 6, 1003 (1961)

    Google Scholar 

  169. J.A. Hinks, A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Methods Phys. Res. B 267, 3652 (2009)

    Article  ADS  Google Scholar 

  170. Y. Yan, Swift heavy ion irradiation damage in YBa2Cu3O7-d superconductors, in Progress in Transmission Electron Microscopy, II. Applications in Materials Science, ed. by X.F. Zhang, Z. Zhang (Springer/Tsinghua University Press, Berlin/Beijing, 2001), pp. 213–245

    Google Scholar 

  171. T. Tanigagaki, K. Ito, Y. Nagakubo, T. Asakawa, T. Kanemura, An in situ heating TEM analysis method for an interface reaction. J. Electron Microsc. 58, 281 (2009)

    Article  Google Scholar 

  172. R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM. Micron 35, 399 (2004)

    Article  Google Scholar 

  173. P.B. Hirsch, R.W. Horne, M.J. Whelan, Direct observations of the arrangement and motion of dislocations in aluminum. Philos. Mag. A 1, 677 (1956)

    Article  ADS  Google Scholar 

  174. P.B. Hirsch, Direct observations of moving dislocations: reflections on the thirtieth anniversary of the first recorded observations of moving dislocations by transmission electron microscopy. Mater. Sci. Eng. 84, 1 (1986)

    Article  Google Scholar 

  175. D.W. Pashley, M.J. Stowell, M.H. Jacobs, T.J. Law, The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope. Philos. Mag. 10, 127 (1964)

    Article  ADS  Google Scholar 

  176. R. Sinclair, T. Yamashita, F.A. Ponce, Atomic motion on the surface of a cadmium telluride single crystal. Nature 290, 386 (1981)

    Article  ADS  Google Scholar 

  177. B.J. Kooi, JThM De Hosson, On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. J. Appl. Phys. 95, 4714 (2004)

    Article  ADS  Google Scholar 

  178. O. Kamimura, T. Dobashi, K. Kawahara, T. Abe, K. Gohara, 10-kV diffractive Imaging using newly developed electron diffraction microscope. Ultramicroscopy 110, 130 (2010)

    Article  Google Scholar 

  179. A. Zobelli, A. Gloter, C.P. Ewels, G. Seifert, C. Colliex, Electron knock-on cross section of carbon and boron nitride nanotubes. Phys. Rev. B 75, 245402 (2007)

    Article  ADS  Google Scholar 

  180. F. Banhart, P.M. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433 (1996)

    Article  ADS  Google Scholar 

  181. M. Pan, Developing image detectors for in situ TEM applications. J. Chin. Electron Microsc. Soc. 29, 295 (2010)

    Google Scholar 

Download references

Acknowledgments

Section 3.5.4 was written with major contributions from X. Han, Y. Zhang, K. Zheng, Y. Yue, and Z. Zhang. The author thanks Emily Zhang for helping proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Feng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, X.F. (2014). In-situ Transmission Electron Microscopy. In: Ziegler, A., Graafsma, H., Zhang, X., Frenken, J. (eds) In-situ Materials Characterization. Springer Series in Materials Science, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45152-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45152-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45151-5

  • Online ISBN: 978-3-642-45152-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics