Skip to main content

Indirect Utilisation of Carbon Dioxide in Organic Synthesis for Valuable Chemicals

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Carbon dioxide has emerged as an important renewable carbon feedstock, and several processes are being investigated with the aim to minimise waste production and increase efficiency Carbon dioxide (CO2) is thermodynamically and kinetically very stable and therefore its direct use as a C-1 source poses significant challenge owing to its inertness. This chapter summarises recent developments in the chemical fixation of CO2 to valuable chemicals as well as defines the scope, potential and limitations of CO2 conversion. Currently, processes based on CO2 to methanol, urea, ethylene carbonate (EC) and dimethyl carbonate (DMC) are well developed. The chemicals derived from these molecules can be considered as indirect fixation of CO2 to various chemicals provided they are prepared from CO2. This can be a good alternative to direct fixation as these chemicals are reactive and can be converted to variety of other valuable chemicals. Direct synthesis of dimethyl carbonate, 1,3-disubstituted urea and 2-oxazolidinones/2-imidazolidinones from CO2 has limitations because of the reaction equilibrium and chemical inertness of CO2. This chapter mainly focuses on the preferred alternative and cleaner routes for their synthesis like transesterification of ethylene carbonate with methanol, transamination of ethylene carbonate with primary amine and transamination reaction of ethylene carbonate with diamines/β-amino alcohols, which are also discussed. On the other hand, CO2 is sequestered in nature as solid carbonate minerals, and these are abundant in nature in the form of mineral rocks (CaCO3). Catalytic hydrogenations of inorganic carbonates that are of significant interest for the production of fuels and chemicals, as they can be rapidly replenished by the carbonation process, are also discussed. Hence, these recent developments of phosgene-free approaches will sound to be viewed as a useful contribution for the indirect utilisation of CO2 in the synthesis of industrially important chemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jessop PG, Ikariya T, Noyori R (1995) Homogeneous catalysis in supercritical fluids. Science 269:1065–1069

    CAS  Google Scholar 

  2. Aresta M, Quaranta E (1997) Carbon dioxide: a substitute for phosgene. Chemtech 27:32–40

    CAS  Google Scholar 

  3. Shaikh AA, Shivaram S (1995) Organic carbonates. Chem Rev 96:951–957

    Google Scholar 

  4. Sakakura S, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    CAS  Google Scholar 

  5. Pierre B, Dominque M, Dominique N (1988) Reaction of carbon dioxide with carbon -carbon bond formation catalyzed by transition-metal complexes. Chem Rev 88:747–764

    Google Scholar 

  6. Aresta M (2003) Carbon dioxide recovery and utilization. (A summary report of the EU Project BRITE-EURAM 1998 BBRT-CT98-5089.) Kluwer Academic Publishers, Dordrecht, 407 pp

    Google Scholar 

  7. Lindsey AS, Jeskey H (1957) The Kolbe-Schmitt reaction. Chem Rev 57:583–620

    CAS  Google Scholar 

  8. Gibson DH (1996) The organometallic chemistry of carbon dioxide. Chem Rev 96:2063–2096

    CAS  Google Scholar 

  9. Chaturvedi D, Ray S (2006) Versatile use of carbon dioxide in the synthesis of carbamates. Monatsh Chem 137:127–145

    CAS  Google Scholar 

  10. Rohr M, Geyer C, Wandeler R, Schneider MS, Murphy EF, Baiker A (2001) Solvent-free ruthenium-catalysed vinylcarbamate synthesis from phenylacetylene and diethylamine in supercritical carbon dioxide. Green Chem 3:123–125

    CAS  Google Scholar 

  11. Shi M, Nicholas KM (1997) Palladium-catalyzed carboxylation of allyl stannanes. J Am Chem Soc 119:5057–5058

    CAS  Google Scholar 

  12. Shi DX, Feng YQ, Zhong SH (2004) Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst. Catal Today 98:505–509

    CAS  Google Scholar 

  13. Wilcox EM, Roberts GW, Spivey JJ (2003) Direct catalytic formation of acetic acid from CO2 and methane. Catal Today 88:83–90

    CAS  Google Scholar 

  14. Sakakura T, Choi J, Saito CY, Sako T (2000) Synthesis of dimethyl carbonate from carbon dioxide: catalysis and mechanism. Polyhedron 19:573–576

    CAS  Google Scholar 

  15. Iwakabe K, Nakaiwa M, Sakakura T, Choi JC, Yasuda H, Takahashi T, Ooshima Y (2005) Reaction rate of the production of dimethyl carbonate directly from the supercritical CO2 and methanol. J Chem Eng Jpn 38:1020–1024

    CAS  Google Scholar 

  16. Aresta M, Dibenedetto A, Fracchiolla E, Giannoccaro P, Pastore C, Papai I, Schubert G (2005) Mechanism of formation of organic carbonates from aliphatic alcohols and carbon dioxide under mild conditions promoted by carbodiimides. J Org Chem 70:6177–6186

    CAS  Google Scholar 

  17. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett 58:225–229

    CAS  Google Scholar 

  18. Tsuda T, Maruta K, Kitaike Y (1992) Nickel (0)-catalyzed alternating copolymerization of carbon dioxide with diynes to poly(2- pyrones). J Am Chem Soc 114:1498–1499

    CAS  Google Scholar 

  19. Behr A, Heite M (2000) Telomerization of carbon dioxide and 1, 3-butadiene: process development in a miniplant. Chem Eng Technol 23:952–955

    CAS  Google Scholar 

  20. Schulz PS, Walter O, Dinjus E (2005) Facile synthesis of a tricyclohexylphosphine-stabilized η3-allyl-carboxylato Ni(II) complex and its relevance in electrochemical butadiene carbon dioxide coupling. Appl Organomet Chem 19:1176–1179

    CAS  Google Scholar 

  21. Takimoto M, Mori M (2002) Novel catalytic CO2 incorporation reaction: nickel-catalyzed regio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J Am Chem Soc 124:10008–10009

    CAS  Google Scholar 

  22. McGhee W, Riley D, Christ K, Pan Y, Parnas B (1995) Carbon dioxide as a phosgene replacement: synthesis and mechanistic studies of urethanes from amines, CO2 and alkyl chlorides. J Org Chem 60:2820–2830

    CAS  Google Scholar 

  23. Ochiai B, Inoue S, Endo T (2005) One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide and diamine. J Polym Sci Part A Polym Chem 43:6613–6618

    CAS  Google Scholar 

  24. Olah GA, Geoppert A, Surya Prakash GK (2009) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  25. Bart JCJ, Sneeden JJF (1987) Copper-zinc oxide-alumina methanol catalysts revisited. Catal Today 2:1–124

    CAS  Google Scholar 

  26. Weissermel K, Arpe HJ (2003) Industrial organic chemistry. Wiley-VCH, Weinheim, pp 30–36

    Google Scholar 

  27. Hansen JB, Nielsen PEH (2008) In: Ertl G, Knçzinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 6, 3rd edn. Wiley-VCH, Weinheim, pp 2920–2949

    Google Scholar 

  28. Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115:33

    CAS  Google Scholar 

  29. Behr A (1988) Carbon dioxide as an alternative C1 synthetic unit: activation by transition-metal complexes. Angew Chem Int Ed Engl 27:661–678

    Google Scholar 

  30. Elvers B, Hawkins S, Schulz G (eds) (1992) Ullmann’s encyclopedia of industrial chemistry A, vol 21, 5th edn. VCH, Weinheim, p 207

    Google Scholar 

  31. Beckman EJ (1999) Making polymers from carbon dioxide. Science 283:946–947

    CAS  Google Scholar 

  32. Giannoccaro P, Dibenedetto A, Gargano M, Quaranta E, Aresta M (2008) Interaction of palladium(II) complexes with amino-alcohols: synthesis of new amino-carbonyl complexes, key intermediates to cyclic carbamates. Organometallics 27:967–975

    CAS  Google Scholar 

  33. Gabriele B, Salerno G, Brindisi D, Costa M, Chiusoli GP (2000) Synthesis of 2-oxazolidinones by direct palladium-catalyzed oxidative carbonylation of 2-amino-1-alkanols. Org Lett 2:625–627

    CAS  Google Scholar 

  34. Gabriele B, Mancuso R, Salerno G, Costa DM (2003) An improved procedure for the palladium-catalyzed oxidative carbonylation of β-amino alcohols to oxazolidin-2-ones. J Org Chem 68:601–604

    CAS  Google Scholar 

  35. Giannoccaro P, Ferragina C, Gargano M, Quaranta E (2010) Pd-catalysed oxidative carbonylation of amino alcohols to N, N′-bis(hydroxyalkyl)ureas under mild conditions using molecular oxygen as the oxidant. Appl Catal A Gen 375:78–84

    CAS  Google Scholar 

  36. Diaz DJ, Hylton KG, McElwee-White L (2006) Selective catalytic oxidative carbonylation of amino alcohols to ureas. J Org Chem 71:734–738

    CAS  Google Scholar 

  37. Qian F, McCusker JE, Zhang Y, Main AD, Chlebowski M, Kokka M, McElwee-White L (2002) Catalytic oxidative carbonylation of primary and secondary diamines to cyclic ureas. Optimization and substituent studies. J Org Chem 67:4086–4092

    CAS  Google Scholar 

  38. Ushikoshi K, Mori K, Watanabe T, Saito M (1998) A 50 kg/day class test plant for methanol synthesis from CO2 and H2 Study. Surf Sci Catal 114:357–364

    Google Scholar 

  39. Das S, Mçller K, Junge K, Beller M (2011) Zinc-catalyzed chemoselective reduction of esters to alcohols. Chem Eur J 17:7414

    CAS  Google Scholar 

  40. Darensbourg DJ, Ovalles C, Pala M (1983) Homogeneous catalysts for carbon dioxide/hydrogen activation. Alkyl formate production using anionic ruthenium carbonyl clusters as catalysts. J Am Chem Soc 105:5937–5939

    CAS  Google Scholar 

  41. Tsai JC, Nicholas KM (1992) Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid. J Am Chem Soc 114:5117–5124

    CAS  Google Scholar 

  42. Jessop PJ, Ikariya T, Noyori R (1995) Homogeneous hydrogenation of carbon dioxide. Chem Rev 95:259–272

    CAS  Google Scholar 

  43. Jessop PJ, Hisiao Y, Ikariya T, Noyori R (1996) Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J Am Chem Soc 1996(118):344–355

    Google Scholar 

  44. Tominaga K, Sasaki Y, Kawai M, Watanabe T, Saito M (1993) Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane. J Chem Soc Chem Commun 7:629

    Google Scholar 

  45. Boddien A, Gärtner F, Federsel C, Piras I, Junge H, Jackstell R, Beller M (2012) In: Ding K, Dai L-X (eds) Organic chemistry: breakthroughs and perspectives. Wiley-VCH, Weinheim, pp 683–722

    Google Scholar 

  46. Wang W, Wang SP, Ma XB, Gong JL (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703

    CAS  Google Scholar 

  47. Marinus JM, Nico SW, Hiemstra H, Poetsch E, Casutt M (1995) Synthesis of D-(+)-biotin through selective ring closure of N-acyliminium silyl enol ethers. Angew Chem 34–21:2391–2393

    Google Scholar 

  48. Leitner W (1995) Carbon dioxide as a raw material: the synthesis of formic acid and its derivatives. Angew Chem Int Ed Engl 34:2207

    CAS  Google Scholar 

  49. Ma J, Sun N, Zhang X, Zhao N, Mao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221

    CAS  Google Scholar 

  50. Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat Chem 3:609

    CAS  Google Scholar 

  51. Dixneuf PH (2011) Bifunctional catalysis: a bridge from CO2 to methanol. Nat Chem 3:578

    CAS  Google Scholar 

  52. Sato Y, Yamamoto T, Souma Y (2000) Poly(pyridine-2,5-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol: catalytic activity and corrosion influence. Catal Lett 65:123–126

    CAS  Google Scholar 

  53. Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11:2–29

    CAS  Google Scholar 

  54. Wei T, Sun Y (2003) Synthesis of dimethyl carbonate by transesterification over CaO/carbon composites. Green Chem 5:343

    CAS  Google Scholar 

  55. Jessop PG, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475

    CAS  Google Scholar 

  56. Taniguchi T, Ogasawara K (1993) Lipase–triethylamine-mediated dynamic transesterification of a tricyclic acyloin having a latent meso-structure: a new route to optically pure oxodicyclopentadiene. Chem Commun 15:1399

    Google Scholar 

  57. Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K (2001) CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 76:71

    CAS  Google Scholar 

  58. Jiang C, Guo Y, Wang C, Hu C, Wu Y, Wang E (2003) Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions. Appl Catal A Gen 256:203–212

    CAS  Google Scholar 

  59. Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal A Gen 219:259–266

    CAS  Google Scholar 

  60. Stinson S (1992) Edith M. Flanigen Wins Perkin Medal. Chem Eng News 10:25

    Google Scholar 

  61. Wang JQ, Sun J, Cheng WG, Shi CY, Dong K, Zhang XP, Zhang SJ (2012) Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction. Catal Sci Technol 2:600–605

    CAS  Google Scholar 

  62. Ju HY, Manju MD, Park DW (2007) Performance of ionic liquid as catalysts in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. React Kinet Catal Lett 90:3

    CAS  Google Scholar 

  63. Yang ZZ, He LN, Dou XY, Chanfreau S (2010) Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol. Tetrahedron Lett 51:2931–2934

    CAS  Google Scholar 

  64. Tatsumi T, Watanabe Y, Koyano KA (1996) Synthesis of dimethyl carbonate from ethylene carbonate and methanol using TS-1 as solid base catalyst. Chem Commun 19:2281–2283

    Google Scholar 

  65. Sriniwas D, Srivasatava R, Ratnasamy P (2004) Transesterifications over titanosilicate molecular sieves. Catal Today 96:127–133

    Google Scholar 

  66. Fujita S, Arai M (2005) Chemical fixation of carbon dioxide: synthesis of cyclic carbonate, dimethyl carbonate, cyclic urea and cyclic urethane. J Japan Pet Inst 48:67

    Google Scholar 

  67. Li Y, Zhao XQ, Wang YJ (2004) Synthesis of dimethyl carbonate from propylene oxide, carbon dioxide and methanol on KOH/4A molecular sieve catalyst. Chin J Cat 25:633

    Google Scholar 

  68. Feng SJ, Lu ZB, He R (2004) Tertiary amino group covalently bonded to MCM-41 silica as heterogeneous catalyst for the continuous synthesis of dimethyl carbonate from methanol and ethylene carbonate. Appl Catal A Gen 272:347–352

    CAS  Google Scholar 

  69. Knifton JF, Duranleau RG (1991) Ethylene glycol-dimethyl carbonate cogeneration. J Mol Catal 67:389–399

    CAS  Google Scholar 

  70. Jagtap SR, Bhanushali MJ, Panda AG, Bhanage BM (2008) Synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol using poly-4-vinyl pyridine as a novel base catalyst. Catal Commun 122:1928–1931

    Google Scholar 

  71. Dyen ME, Swern D (1967) 2-Oxazolidones. Chem Rev 67:197–246

    CAS  Google Scholar 

  72. Pancartov VA, Frenkel TM, Fainleib AM (1983) 2-Oxazolidinones. Russ Chem Rev 52:576–593

    Google Scholar 

  73. Kudo N, Taniguchi M, Furuta S, Endo T, Honma T (1998) Synthesis and herbicidal activities of 4-substituted 3-aryl-5-tert-butyl-4-oxazolin-2-ones. Agric Food Chem 46:5305–5312

    CAS  Google Scholar 

  74. O’Hagan D, Tavasli M (1999) 1, 2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Tetrahedron Asymmetry 10:1189

    Google Scholar 

  75. Ager DJ, Prakash I, Schaad DR (1961) 2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 96:835–875

    Google Scholar 

  76. Hodge CN, Lam PYS, Eyermann CJ, Jadhav PK, Fernandez Ru Y, De Lucca CH, Chang CH, Kaltenbach RJC, Aldrich PE (1998) Calculated and experimental low-energy conformations of cyclic urea HIV protease inhibitors. J Am Chem Soc 120:4570–4581

    CAS  Google Scholar 

  77. Puschin NA, Mitic RV (1937) Compounds of phosgene with hexamethylenetetramine, m-toluidine and ethylenediamine. Justus L Ann Chem 532:300

    CAS  Google Scholar 

  78. Fu Y, Baba T, Ono Y (2001) Carbonylation of o-phenylenediamine and o-aminophenol with dimethyl carbonate using lead compounds as catalysts. J Catal 197:91–97

    CAS  Google Scholar 

  79. Baba T, Kobayashi A, Yamauchi T, Tanaka H, Aso S, Inomata M, Kawanami Y (2002) Catalytic methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catal Lett 82:193–197

    CAS  Google Scholar 

  80. Bhanage BM, Fujita SI, Ikushima Y, Arai M (2004) Non-catalytic clean synthesis route using urea to cyclic urea and cyclic urethane compounds. Green Chem 6:78–80

    CAS  Google Scholar 

  81. Bhanage BM, Fujita SI, Ikushima Y, Arai M (2003) Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem 5:340–342

    CAS  Google Scholar 

  82. Bank MR, Cadgan JIG, Thomas DE (1991) 1,3-Oxazolidin-2-ones from 1H-aziridines by a novel stratagem which mimics the direct insertion of CO2. J Chem Soc Perkin Trans I 1:961–962

    Google Scholar 

  83. Xiao LF, Xu LW, Xia CG (2007) A method for the synthesis of 2-oxazolidinones and 2-imidazolidinones from five-membered cyclic carbonates and -aminoalcohols or 1,2-diamines. Green Chem 9:369–372

    CAS  Google Scholar 

  84. Tu M, Davis RJ (2001) Cycloaddition of CO2 to epoxides over solid base catalysts. J Catal 199:85–91

    CAS  Google Scholar 

  85. Sun J, Fujita SI, Bhanage BM, Arai M (2004) One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catal Today 93–95:383–388

    Google Scholar 

  86. Jagtap SR, Patil YP, Fujita SI, Arai M, Bhanage BM (2008) Heterogeneous base catalyzed synthesis of 2-oxazolidinones/2- imidiazolidinones via transesterification of ethylene carbonate with β-aminoalcohols/1,2-diamines. Appl Catal A Gen 341:133–138

    CAS  Google Scholar 

  87. Bigi F, Maggi R, Sartori G (2000) Selected syntheses of ureas through phosgene substitutes. Green Chem 2:140–148

    CAS  Google Scholar 

  88. Getman DP, DeCrescenzo GA, Heintz RM, Reed KL, Talley JJ, Bryant ML, Clare M, Houseman KA, Marr JJ, Mueller RA, Vazquez HML, Shieh S, Stallings WC, Stageman RA (1993) Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)- (hydroxyethyl)urea isostere. J Med Chem 1993(36):288–291

    Google Scholar 

  89. Shi F, Deng Y (2001) First gold(I) complex-catalyzed oxidative carbonylation of amines for the syntheses of carbamates. Chem Commun 5:443–444

    Google Scholar 

  90. Bartolo G, Salerno G, Mancuso R, Costa M (2004) Efficient synthesis of ureas by direct palladium- catalyzed oxidative carbonylation of amines. J Org Chem 69:4741–4750

    Google Scholar 

  91. McCusker JE, Main AD, Johnson KS, Grasso CA, McElwee-White L (2000) W(CO)6-Catalyzed oxidative carbonylation of primary amines to N, N′-disubstituted ureas in single or biphasic solvent systems optimization and functional group compatibility studies. J Org Chem 65:5216–5222

    CAS  Google Scholar 

  92. Shi F, Deng YY, Sima TL, Yang HZ (2001) A novel ZrO2–SO2– supported palladium catalyst for syntheses of disubstituted ureas from amines by oxidative carbonylation. Tetrahedron Lett 42:2161–2163

    CAS  Google Scholar 

  93. Ion A, Parvulescu V, Jacobs P, De Vos D (2007) Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis. Green Chem 9:158–161

    CAS  Google Scholar 

  94. Jiang T, Ma X, Zhou Y, Liang S, Zhang J, Han B (2008) Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chem 10:465–469

    CAS  Google Scholar 

  95. Ogura H, Tekeda K, Tokue R, Kobayashi T (1978) A convenient direct synthesis of ureas from carbon dioxide and amines. Synthesis 5:394–396

    Google Scholar 

  96. Fournier J, Bruneau C, Dixneuf PH, Lecolier S (1991) Ruthenium-catalyzed synthesis of symmetrical N, N-dialkylureas directly from carbon dioxide and amines. J Org Chem 56:4456–4458

    CAS  Google Scholar 

  97. Cooper CF, Falcone SJ (1995) A simple one-pot procedure for preparing symmetrical diarylureas from carbon dioxide and aromatic amines. Synth Commun 25:2467–2475

    CAS  Google Scholar 

  98. Yamazaki N, Higashi F, Iguchi T (1974) Carbonylation of amines with carbon dioxide under atmospheric conditions. Tetrahedron Lett 13:1191–1194

    Google Scholar 

  99. Nomura R, Hasegawa Y, Ishimoto M, Toyosaki T, Matsuda H (1992) Carbonylation of amines by carbon dioxide in the presence of an organoantimony catalyst. J Org Chem 57:7339–7342

    CAS  Google Scholar 

  100. Aresta M, Quaranta E, Tommasi I, Giannocarro P, Ciccarese A (1995) Enzymic versus chemical carbon dioxide utilization. Part I. The role of metal centers in carboxylation reactions. Gazz Chim Ital 125:509

    CAS  Google Scholar 

  101. Hayashi T, Yasuoka JEP (1998) 846679 (to Sumika Fine Chemicals Co.)

    Google Scholar 

  102. Fujita S, Bhanage BM, Arai M (2004) Synthesis of N, N-disubstituted urea from ethylene carbonate and amine using CaO. Chem Lett 33:742–743

    Google Scholar 

  103. Fujita S, Bhanage BM, Kanamura H, Arai M (2005) Synthesis of 1,3-dialkylurea from ethylene carbonate and amine using calcium oxide. J Mol Catal A Chem 230:43–48

    CAS  Google Scholar 

  104. Galli C (1992) “Cesium ion effect” and macrocyclization. A critical review. Org Prep Proced Int 24:287–307

    Google Scholar 

  105. Ostrowicki A, Vogtle F (1992) In: Weber E, Vogtle F (eds) Topics in current chemistry, vol 161. Springer, Heidelberg, p 37

    Google Scholar 

  106. Saliu F, Rindone B (2010) Organocatalyzed synthesis of ureas from amines and ethylene carbonate. Tetrahedron Lett 51:6301–6304

    CAS  Google Scholar 

  107. Jagtap SR, Patil YP, Fujita SI, Arai M, Bhanage BM (2009) Synthesis of 1,3-disubstituted symmetrical/unsymmetrical ureas via Cs2CO3- catalyzed transamination of ethylene carbonate and primary amines. Synth Commun 39:2093–2100

    CAS  Google Scholar 

  108. Jessop PG, Joo F, Tai CC (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248:2425

    CAS  Google Scholar 

  109. Federsel C, Jackstell R, Beller M (2010) State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew Chem Int Ed 49:6254–6257

    CAS  Google Scholar 

  110. Yu KMK, Yeung CMY, Tsang SC (2007) Carbon dioxide fixation into chemicals (methyl formate) at high yields by surface coupling over a Pd/Cu/ZnO nanocatalyst. J Am Chem Soc 129:6360

    CAS  Google Scholar 

  111. Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III) − pincer complexes. J Am Chem Soc 131:14168

    CAS  Google Scholar 

  112. Lee JS, Kim JC, Kim YG (1990) Methyl formate as a new building block in C1 chemistry. Appl Catal 57:1–30

    CAS  Google Scholar 

  113. Federsel C, Jackstell R, Boddien A, Laurenczy G, Beller M (2010) Ruthenium-catalyzed hydrogenation of bicarbonate in water. ChemSusChem 3:1048

    CAS  Google Scholar 

  114. Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat Chem 13:609

    Google Scholar 

  115. World Energy Council (WEC) (2010) http://worldenegy.org/wec-geis/

  116. Jagadeesan D, Eswaramoorthy M, Rao CNR (2009) Investigations of the conversion of inorganic carbonates to methane. ChemSusChem 2:878

    CAS  Google Scholar 

  117. Jagadeesan D, Sundarayya Y, Madras G, Rao CNR (2013) Direct conversion of calcium carbonate to C1–C3 hydrocarbons. RSC Adv 3:7224

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watile, R.A., Bhanage, B.M., Fujita, Si., Arai, M. (2014). Indirect Utilisation of Carbon Dioxide in Organic Synthesis for Valuable Chemicals. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_3

Download citation

Publish with us

Policies and ethics