Skip to main content

Accelerated Carbonation Processes for Carbon Dioxide Capture, Storage and Utilisation

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Accelerated carbonation includes a set of processes by which an alkaline material reacts with carbon dioxide forming the corresponding carbonate. This process is applied at pilot scale or full scale for carbon capture from diluted CO2 sources (flue gas or syngas), using (hydr)oxides or carbonates of alkaline metals. Its application to carbon storage has been investigated for more than a decade. Mineralisation of CO2 by reaction with Mg- or Ca-bearing silicate minerals would allow in principle to store CO2 in a safe and definitive manner, without any need of the long-term monitoring required for geological storage. Accelerated carbonation of alkaline industrial residues is also an interesting storage option for specific industrial sectors, such as steelmaking and cement industries. As such, differently from the pure utilisation options discussed in this book, accelerated carbonation may provide an effective contribution to the reduction of CO2 emissions to the atmosphere from stationary sources. Besides, when applied to alkaline residues, it may allow for a beneficial use of these types of waste materials, thus providing a further environmental benefit. This chapter discusses the fundamentals of accelerated carbonation and provides an overview of its main applications proposed so far in the framework of CO2 capture, utilisation and storage (CCUS) and the perspectives for its development in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boschi C, Dini A, Dallai L et al (2010) Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy). Chem Geol 265:209–226

    Article  Google Scholar 

  2. Lackner KS, Wendt CH, Butt D et al (1995) Carbon dioxide disposal in carbonate minerals. Energy 20:1153–1170

    Article  CAS  Google Scholar 

  3. Haug TA, Kleiv RA, Munz IA (2010) Investigating dissolution of mechanically activated olivine for carbonation purposes. Appl Geochem 25:1547–1563

    Article  CAS  Google Scholar 

  4. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345:486

    Article  Google Scholar 

  5. Abanades JC, Alvarez D (2003) Conversion limits in the reaction of CO2 with lime. Energy Fuels 17:308–315

    Article  CAS  Google Scholar 

  6. Yi F, Zou HK, Chu GW et al (2009) Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chem Eng J 145:377–384

    Article  CAS  Google Scholar 

  7. IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 442 pp

    Google Scholar 

  8. Lackner K, Duby P, Yegulalp T et al (2008) AISI/DOE technology roadmap – TRP9957 Integrating steel production with mineral carbon sequestration. US DOE Technical Report, New York, doi: 10.2172/938528

  9. Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy Environ 27:193–232

    Article  Google Scholar 

  10. Zevenhoven R, Teir S, Eloneva S (2006) Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catal Today 115:73–79

    Article  CAS  Google Scholar 

  11. Gunning PJ, Hills CD, Carey PJ (2010) Accelerated carbonation treatment of industrial residues. Waste Manag 30:1081–1090

    Article  CAS  Google Scholar 

  12. Kirchofer A, Becker A, Brandt A et al (2013) CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States. Environ Sci Technol 47:7548–7554

    CAS  Google Scholar 

  13. Gunning PJ, Hills CD, Carey PJ (2009) Production of lightweight aggregate from industrial waste and carbon dioxide. Waste Manag 29:2722–2728

    Article  CAS  Google Scholar 

  14. Shimizu T, Hirama T, Hosoda H et al (1999) A twin fluid-bed reactor for removal of CO2 from combustion processes. Trans IChemE 77:62–68

    Article  CAS  Google Scholar 

  15. Blamey J, Anthony EJ, Wang J et al (2010) The calcium looping cycle for large-scale CO2 capture. Prog Energy Combust Sci 36:260–279

    Article  CAS  Google Scholar 

  16. Zeman F (2008) Effect of steam hydration on performance of lime sorbent for CO2 capture. Int J Greenh Gas Control 2:203–209

    Article  CAS  Google Scholar 

  17. Abanades JC, Rubin ES, Anthony EJ (2004) Sorbent cost and performance in CO2 capture systems. Ind Eng Chem Res 43:3462–3466

    Article  CAS  Google Scholar 

  18. Gupta H, Fan LS (2002) Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042

    Article  CAS  Google Scholar 

  19. Stendardo S, Andersen LK, Herce C (2013) Self-activation and effect of regeneration conditions in CO2–carbonate looping with CaO–Ca12Al14O33 sorbent. Chem Eng J 220:383–394

    Article  CAS  Google Scholar 

  20. Sanyal D, Vasishtha N, Saraf DN (1988) Modeling of carbon dioxide absorber using hot carbonate process. Ind Eng Chem Res 27:2149–2156

    Article  CAS  Google Scholar 

  21. Nagasawa H, Yamasaki H, Iizuka A et al (2009) A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis. AIChE J 55:3286–3293

    Article  CAS  Google Scholar 

  22. Baciocchi R, Storti G, Mazzotti M (2006) Process design and energy requirements for the capture of carbon dioxide from air. Chem Eng Process 34:1047–1058

    Article  Google Scholar 

  23. APS (2011) Direct air capture of CO2 with chemicals: a technology assessment for the APS panel on public affairs. American Physical Society Technical Report, Washington DC, April

    Google Scholar 

  24. Aroonwilas A, Tontiwachwuthikul P (2000) Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions. Chem Eng Sci 55:3651–3663

    Article  CAS  Google Scholar 

  25. Zevenhoven R, Teir S, Eloneva S (2008) Heat optimisation of a staged gas–solid mineral carbonation process for long-term CO2 storage. Energy 33:362–370

    Article  CAS  Google Scholar 

  26. Nduagu E, Biörklöf T, Fagerlund J et al (2012) Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization – Part 2: Mg extraction modeling and application to different Mg silicate rocks. Miner Eng 30:87–94

    Article  CAS  Google Scholar 

  27. Gerdemann SJ, O’Connor WK, Dahlin DC et al (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587–2593

    Article  CAS  Google Scholar 

  28. Huijgen WWJ, Witkamp GJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61:4242–4251

    Article  CAS  Google Scholar 

  29. Huijgen WWJ, Ruijg GJ, Comans RNJ et al (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind Eng Chem Res 45:9184–9194

    Article  CAS  Google Scholar 

  30. Huijgen WWJ, Comans RNJ, Witkamp G (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Conv Manag 48:1923–1935

    Article  CAS  Google Scholar 

  31. Hänchen M, Prigiobbe V, Storti G et al (2006) Dissolution kinetics of fosteritic olivine at 90–150 °C including effects of the presence of CO2. Geochim Cosmochim Acta 70:4403–4416

    Article  Google Scholar 

  32. Prigiobbe V, Costa G, Baciocchi R (2009) The effect of CO2 and salinity on olivine dissolution kinetics at 120 °C. Chem Eng Sci 64:3510–3515

    Article  CAS  Google Scholar 

  33. Park AAH, Fan LS (2004) CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59:5241–5247

    Article  CAS  Google Scholar 

  34. Teir S, Kuusik R, Fogelholm CJ et al (2007) Production of magnesium carbonates from serpentinite for long-term storage of CO2. Int J Miner Process 85:1–15

    Article  CAS  Google Scholar 

  35. Wang X, Maroto-Valer MM (2011) Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation. Fuel 90:1229–1237

    Article  CAS  Google Scholar 

  36. Hänchen M, Prigiobbe V, Baciocchi R et al (2008) Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure. Chem Eng Sci 63:1012–1028

    Article  Google Scholar 

  37. Bobicki ER, Liu Q, Xu Z et al (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust 38:302–320

    Article  CAS  Google Scholar 

  38. Pan SY, Chang EE, Chiang PC (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791

    CAS  Google Scholar 

  39. Huijgen WJJ, Comans RNJ (2003) Carbon dioxide sequestration by mineral carbonation: literature review. Technical Report ECN-C—03016, Petten, February

    Google Scholar 

  40. Van Gerven T, Van Keer E, Arickx S et al (2005) Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Manag 25:291–300

    Article  Google Scholar 

  41. Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater B128:73–79

    Article  Google Scholar 

  42. Baciocchi R, Costa G, Lategano E et al (2010) Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Manage 30:1310–1317

    Article  CAS  Google Scholar 

  43. Santos RM, Mertens G, Salman M et al (2013) Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J Environ Manage 128:807–821

    Article  CAS  Google Scholar 

  44. Fernández-Bertos M, Li X, Simons SJR et al (2004) Investigation of accelerated carbonation for the stabilization of MSW incinerator ashes and the sequestration of CO2. Green Chem 6:428–436

    Article  Google Scholar 

  45. Baciocchi R, Costa G, Di Bartolomeo E et al (2009) The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues. Waste Manage 29:2994–3003

    Article  CAS  Google Scholar 

  46. Cappai G, Cara S, Muntoni A (2012) Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration. J Hazard Mater 207–208:159–164

    Article  Google Scholar 

  47. Huijgen WJJ, Comans RNJ (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40:2790–2796

    Article  CAS  Google Scholar 

  48. Baciocchi R, Costa G, Bartolomeo D et al (2010) Carbonation of stainless steel slag as a process for CO2 storage and slag valorization. Waste Biomass Valor 1:467–477

    Article  CAS  Google Scholar 

  49. van Zomeren A, van der Laan SR, Kobesen HBA et al (2011) Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manage 31:2236–2244

    Article  Google Scholar 

  50. Santos RM, Van Bouwel J, Vandevelde E et al (2013) Accelerated mineral carbonation of stainless steel slags for CO2storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenh Gas Control 17:32–45

    Article  CAS  Google Scholar 

  51. Reddy KJ, Drever JI, Hausfurther VR (1991) Effects of a CO2 pressure process on the solubilities of major and trace elements in oil shale solid wastes. Environ Sci Technol 25:1466–1469

    Article  CAS  Google Scholar 

  52. Uibu M, Uus M, Kuusik R (2009) CO2 mineral sequestration in oil-shale wastes from Estonian power production. J Environ Manage 90:1253–1260

    Article  CAS  Google Scholar 

  53. Arickx S, Van Gerven T, Vandecasteele C (2006) Accelerated carbonation for treatment of MSWI bottom ash. J Hazard Mater B137:235–243

    Article  Google Scholar 

  54. Back M, Kuehn M, Stanjek H et al (2008) Reactivity of alkaline lignite fly ashes towards CO2 in water. Environ Sci Technol 42:4520–4526

    Article  CAS  Google Scholar 

  55. Bonenfant D, Kharoune L, Sauvé S et al (2008) CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature. Ind Eng Chem Res 47:7617–7622

    Article  CAS  Google Scholar 

  56. Fernández-Bertos M, Simons SJR, Hills CD et al (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater B112:193–205

    Article  Google Scholar 

  57. Iizuka A, Fujii M, Yamasaki A et al (2004) Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Ind Eng Chem Res 43:7880–7887

    Article  CAS  Google Scholar 

  58. Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–2682

    Article  CAS  Google Scholar 

  59. Huntzinger DN, Gierke JS, Kawatra SK et al (2009) Carbon dioxide sequestration in Cement Kiln Dust through mineral carbonation. Environ Sci Technol 43:1986–92

    Article  CAS  Google Scholar 

  60. Jia L, Anthony EJ (2000) Pacification of FBC ash in a pressurized TGA. Fuel 79:1109–1114

    Article  CAS  Google Scholar 

  61. Baciocchi R, Polettini A, Pomi R et al (2006) CO2 sequestration by direct gas-solid carbonation of APC residues. Energy Fuels 20:1933–1940

    Article  CAS  Google Scholar 

  62. Prigiobbe V, Polettini A, Baciocchi R (2009) Gas–solid carbonation kinetics of air pollution control residues for CO2 storage. Chem Eng J 148:270–278

    Article  CAS  Google Scholar 

  63. Bonenfant D, Kharoune L, Sauvé S et al (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47:7610–7616

    Article  CAS  Google Scholar 

  64. Montes-Hernandez G, Pérez-López R, Renard F et al (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161:1346–1354

    Article  Google Scholar 

  65. Young JF, Berger RL, Breese J (1974) Accelerated curing of compacted calcium silicate mortars on exposure to CO2. J Am Ceram Soc 57:394–397

    Article  CAS  Google Scholar 

  66. Papadakis VG, Vayenas CG, Fardis MN (1991) Experimental investigation and mathematical modelling of the concrete carbonation problem. Chem Eng Sci 46:1333–1338

    Article  CAS  Google Scholar 

  67. Costa G, Baciocchi R, Polettini A et al (2007) Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ Monit Assess 135:55–75

    Article  CAS  Google Scholar 

  68. Kodama S, Nishimoto T, Yamamoto N et al (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33:776–784

    Article  Google Scholar 

  69. Teir S, Eloneva S, Fogelholm CJ et al (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32:528–539

    Article  CAS  Google Scholar 

  70. Johnson DC, Macleod CL, Carey PJ et al (2003) Solidification of stainless steel slag by accelerated carbonation. Environ Technol 24:671–678

    Article  CAS  Google Scholar 

  71. Pérez-López R, Montes-Hernandez G, Nieto JM et al (2008) Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere. Appl Geochem 23:2292–2300

    Article  Google Scholar 

  72. Mostbauer P, Lenz S, Lechner P (2008) MSWI bottom ash for upgrading of biogas and landfill gas. Environ Technol 29:757–764

    Article  CAS  Google Scholar 

  73. Reddy KJ, Kohn S, Weber H et al (2011) Simultaneous capture and mineralization of coal combustion flue gas carbon dioxide (CO2). Energy Proced 4:1574–83

    Article  CAS  Google Scholar 

  74. Eloneva S, Teir S, Salminen J et al (2008) Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33:1461–1467

    Article  CAS  Google Scholar 

  75. Eloneva S, Teir S, Salminen J et al (2008) Steel converter slag as raw material for precipitation of pure calcium carbonate. Ind Eng Chem Res 47:7104–7111

    Article  CAS  Google Scholar 

  76. Eloneva S, Mannisto P, Said A et al (2011) Ammonium salt-based steelmaking slag carbonation: precipitation of CaCO3 and ammonia losses assessment. Greenh Gas Sci Technol 1:305–311

    Article  CAS  Google Scholar 

  77. Reddy KJ, Gloss SP, Wang L (1994) Reaction of CO2 with alkaline solid wastes to contaminant mobility. Water Res 28:1377–1382

    Article  CAS  Google Scholar 

  78. Baciocchi R, Costa G, Gavasci R et al (2012) Regeneration of a spent alkaline solution from a biogas upgrading unit by carbonation of APC residues. Chem Eng J 179:63–71

    Article  CAS  Google Scholar 

  79. Baciocchi R, Carnevale E, Corti A et al (2013) Innovative process for biogas upgrading with CO2 storage: results from pilot plant operation. Biomass Bioenergy 53:128–137

    Article  CAS  Google Scholar 

  80. O’Connor WK, Dahlin DC, Rush GE et al (2005) Aqueous mineral carbonation: mineral availability, pretreatment, reaction parametrics and process studies. Report DOE/ARC-TR-04-002. Albany Research Center, Albany

    Google Scholar 

  81. Kelly KE, Silcox GD, Sarofim AF et al (2011) An evaluation of ex situ, industrial-scale, aqueous CO2 mineralization. Int J Greenh Gas Control 5:1587–1595

    Article  CAS  Google Scholar 

  82. Kirchofer A, Brandt A, Krevor S et al (2012) Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies. Energy Environ Sci 5:8631–8641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Baciocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baciocchi, R., Costa, G., Zingaretti, D. (2014). Accelerated Carbonation Processes for Carbon Dioxide Capture, Storage and Utilisation. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_11

Download citation

Publish with us

Policies and ethics