Skip to main content

NeuCube Neuromorphic Framework for Spatio-temporal Brain Data and Its Python Implementation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8228))

Abstract

Classification and knowledge extraction from complex spatio-temporal brain data such as EEG or fMRI is a complex challenge. A novel architecture named the NeuCube has been established in prior literature to address this. A number of key points in the implementation of this framework, including modular design, extensibility, scalability, the source of the biologically inspired spatial structure, encoding, classification, and visualisation tools must be considered. A Python version of this framework that conforms to these guidelines has been implemented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kasabov, N.: NeuCube EvoSpike Architecture for Spatio-Temporal Modelling and Pattern Recognition of Brain Signals. In: Mana, N., Schwenker, F., Trentin, E. (eds.) ANNPR 2012. LNCS (LNAI), vol. 7477, pp. 225–243. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated Talairach Atlas labels for functional brain mapping. Human Brain Mapping 10, 120–131 (2000)

    Article  Google Scholar 

  3. Kepecs, A., van Rossum, M.C.W., Song, S., Tegner, J.: Spike-timing-dependent plasticity: common themes and divergent vistas. Biological Cybernetics 87, 446–458 (2002)

    Article  MATH  Google Scholar 

  4. Koessler, L., Maillard, L., Benhadid, A., Vignal, J.P., Felblinger, J., Vespignani, H., Braun, M.: Automated cortical projection of EEG sensors: Anatomical correlation via the international 10-10 system. NeuroImage 46, 64–72 (2009)

    Article  Google Scholar 

  5. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Sequences. Int. J. of Neural Systems 22(4), 1–16 (2012)

    Google Scholar 

  6. Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic Evolving Spiking Neural Networks for On-line Spatio- and Spectro-Temporal Pattern Recognition. Neural Networks 41, 188–201 (2013)

    Article  Google Scholar 

  7. Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neur. Netw. 23(1), 16–19 (2010)

    Article  Google Scholar 

  8. Indiveri, G., Stefanini, F., Chicca, E.: Spike-based learning with a generalized integrate and fire silicon neuron. In: 2010 IEEE Int. Symp. Circuits and Syst., Paris, pp. 1951–1954 (2010)

    Google Scholar 

  9. Indiveri, G., Horiuchi, T.K.: Frontiers in neuromorphic engineering. Frontiers in Neuroscience 5, 1–2 (2011)

    Google Scholar 

  10. Furber, S.: To Build a Brain. IEEE Spectrum 49(8), 39–41 (2012)

    Article  Google Scholar 

  11. Galluppi, F., Rast, A., Davies, S., Furber, S.: A general-purpose model translation system for a universal neural chip. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 58–65. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Serrano-Gotarredona, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B., Masquelier, T.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience 7 (2013)

    Google Scholar 

  13. Hawrylycz, M.J., et al.: An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)

    Article  Google Scholar 

  14. Davison, A.P., Brüderle, D., Eppler, J.M., Kremkow, J., Muller, E., Pecevski, D.A., Perrinet, L., Yger, P.: PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics 2(11), 1–10 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scott, N., Kasabov, N., Indiveri, G. (2013). NeuCube Neuromorphic Framework for Spatio-temporal Brain Data and Its Python Implementation. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42051-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42051-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42050-4

  • Online ISBN: 978-3-642-42051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics