Skip to main content

Lipases in Signaling Plant Defense Responses

  • Chapter
  • First Online:
Phospholipases in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 20))

Abstract

Cellular membranes are important reservoirs for signaling lipids and their precursors. Plant lipases have important functions in the release/synthesis of signaling lipids that contribute to plant defense against pests, including effector- and MAMP-triggered immunity and the hypersensitive response. However, some pests have evolved a way to hijack host lipases and use them to counter and/or suppress host defenses. Other pests actively secrete lipases to breakdown host membranes, releasing molecular signals that benefit growth and development of the pest. This chapter focuses on progress made in recent years toward the identification and characterization of lipases that have important roles in the outcome of plant interaction with pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta IF, Farmer EE (2010) Jasmonates. Arabidopsis Book 8:e0129. doi:10.1199/tab.0129

  • Andersson MX, Hamberg M, Kortchenko O, Brunnström A, McPhail KL, Gerwick WH, Göbel C, Feussner I, Ellerström M (2006a) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana. Formation of a novel oxo-phytodienoic acid-containing galactolipid arabidopside E. J Biol Chem 281:31528–31537

    Article  CAS  PubMed  Google Scholar 

  • Andersson MX, Kortchenko O, Dangl JL, Mackey D, Ellestgöm M (2006b) Phospholipase-dependent signaling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 281:31528–31537

    CAS  Google Scholar 

  • Antico CJ, Colon C, Banks T, Ramonell KM (2011) Insights into the role of jasmonic acid-mediated defense against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56

    Article  Google Scholar 

  • Bargmann BOR, Laxalt AM, ter Riet B, Schouten E, van Leeuwen W, Dekker HL, de Koster CG, Haring MA, Munnik T (2006) LePLDβ1 activation and localization in suspension-cultured tomato cells treated with xylanase. Plant J 45:358–368

    Article  CAS  PubMed  Google Scholar 

  • Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S (2012) New aspects of phloem-mediated long-distance lipid signaling in plants. Front Plant Sci 3:53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berkey R, Bendigeri D, Xiao S (2012) Sphingolipids and plant defense/disease: the “death” connection and beyond. Front Plant Sci 3:68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berto P, Belingheri L, Dehorter B (1997) Production and purification of a novel extracellular lipase from Alternaria brassicicola. Biotechnol Lett 19:533–536

    Article  CAS  Google Scholar 

  • Berto P, Comménil P, Belingheri L, Dehorter B (1999) Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol Lett 180:183–189

    Article  CAS  PubMed  Google Scholar 

  • Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cacas JL, Vailleau F, Davoine C, Ennar N, Agnel JP, Tronchet M, Ponchet M, Blein J-P, Roby D, Triantaphylides C, Montillet J-L (2005) The combined action of 9 lipoxygenase and galactolipase is sufficient to bring about programmed cell death during tobacco hypersensitive response. Plant Cell Environ 28:1367–1378

    Article  CAS  Google Scholar 

  • Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6:13–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chassot C, Métraux J-P (2005) The cuticle as source of signals for plant defense. Plant Biosyst 139:28–31

    Google Scholar 

  • Christensen SA, Kolomiets MV (2011) The lipid language of plant-fungal interactions. Fungal Genet Biol 48:4–14

    Article  CAS  PubMed  Google Scholar 

  • Comménil P, Belingheri L, Dehorter B (1998) Antilipase antibodies prevent infection of tomato leaves by Botrytis cinerea. Physiol Mol Plant Pathol 52:1–14

    Article  Google Scholar 

  • Comménil P, Belingheri L, Bauw G, Dehorter B (1999) Molecular characterization of a lipase induced in Botrytis cinerea by components of grape berry cuticle. Physiol Mol Plant Pathol 55:37–43

    Article  Google Scholar 

  • Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MR (2007) A conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis. Plant Cell 19:688–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dave A, Graham IA (2012) Oxylipin signaling: a distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA). Front Plant Sci 3:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Jong C, Laxalt A, Bargmann B, De Wit P, Joosten M, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    Article  PubMed  Google Scholar 

  • de Torres Zabela M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact 15:808–816

    Article  PubMed  Google Scholar 

  • Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, Kim J, Hwang I, Venturi V (2007) Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73:4950–4958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhondt S, Gouzerh G, Muller A, Legrand M, Heitz T (2002) Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor treated tobacco leaves are not affected by endogenous levels of salicylic acid. Plant J 32:749–762

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Ellinger D, Stingl N, Kubigsteltig II, Bals T, Juenger M, Pollmann S, Berger S, Scheunemann D, Mueller MJ (2010) DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153:114–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng J, Liu G, Selvaraj G, Hughes GR, Wei Y (2005) A secreted lipase encoded by LIP1 is necessary for efficient use of saturated triglyceride lipids in Fusarium graminearum. Microbiology 151:3911–3921

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Wang F, Liu G, Greenshields D, Shen W, Kaminskyj S, Hughes GR, Peng Y, Selvaraj G, Zou J, Wei Y (2009) Analysis of a Blumeria graminis-secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development. Mol Plant Microbe Interact 22:1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Froidure S, Canonne J, Daniel X, Jauneau A, Briere C, Roby D, Rivas S (2010) AtsPLA2-α nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proc Natl Acad Sci U S A 107:15281–15286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu J, Wang S (2011) Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci 2:74

    Article  PubMed Central  PubMed  Google Scholar 

  • Gillaspy G (2011) The cellular language of myo-inositol signaling. New Phytol 192:823–839

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Grienenberger E, Geoffroy P, Mutterer J, Legrand M, Heitz T (2010) The interplay of lipid acyl hydrolases in inducible plant defense. Plant Signal Behav 5:1181–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539–558

    Article  CAS  PubMed  Google Scholar 

  • Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee Y-H, Kang H, Lee I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonic acid (JA) biosynthesis. Dev Cell 14:183–192

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Kumar K, Lee HY, Park Y-II, Cho H-T, Ryu SB (2012) Translocation of phospholipase A2a to apoplasts is modulated by developmental stages and bacterial infection in Arabidopsis. Front Plant Sci 3:126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 27:153–176

    Article  Google Scholar 

  • Kilaru A, Blancaflor EB, Venables BJ, Tripathy S, Mysore KS, Chapman KD (2007) The N-acylethanolamine-mediated regulatory pathway in plants. Chem Biodivers 4,:1933–1955

    Google Scholar 

  • Kirik A, Mudgett MR (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc Natl Acad Sci U S A 106:20532–20537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kourtchenko O, Andersson MX, Hamberg M, Brunnström A, Göbel C, McPhail KL, Gerwick WH, Feussner I, Ellerström M (2007) Oxophytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signaling dependence. Plant Physiol 145:1658–1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krinke O, Ruelland E, Valentová O, Vergnolle C, Renou JP, Taconnat L, Flemr M, Burketová L, Zachowski A (2007) Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in Arabidopsis suspension cells. Plant Physiol 144:1347–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SII, Ryu C-M (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58:235–245

    Article  CAS  PubMed  Google Scholar 

  • La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Article  PubMed  Google Scholar 

  • La Camera S, Balague C, Gobel C, Geoffroy P, Legrand M, Feussner I, Roby D, Heitz T (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481

    Article  PubMed  Google Scholar 

  • Laxalt A, Munnik T (2002) Phospholipid signaling in plant defence. Curr Opin Plant Biol 5:332–338

    Article  CAS  PubMed  Google Scholar 

  • Laxalt A, Ter Riet B, Verdonk JC, Parigi L, Tameling WIL, Vossen J, Haring M, Musgrave A, Munnik T (2001) Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDβ1 on elicitation with xylanase. Plant J 26:237–247

    Article  CAS  PubMed  Google Scholar 

  • Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK (2009) Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophy Res Comm 379:1036–1042

    Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268:24559–24563

    CAS  PubMed  Google Scholar 

  • Louis J, Kukula K-L, Singh V, Reese JC, Jander G, Shah J (2010) Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. Plant J 64:800–811

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Morton J (2007) Characterization of a lipase in Arabidopsis defense. MS thesis, Kansas State University. http://hdl.handle.net/2097/392

  • Mosblech A, König S, Stenzel I, Grezeganek P, Feussner I, Heilmann I (2008) Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1:249–261

    Article  CAS  PubMed  Google Scholar 

  • Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65:949–957

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Fujita M, Ishida J, Nakashima M, Enju A, Sakuai T, Satou M, Kamiya A, Park P, Kobayashi M, Shinozaki K (2003) Expression profiles of Arabidopsis Phospholipase A IIA gene in response to biotic and abiotic stresses. Plant Cell Physiol 44:1246–1252

    Article  CAS  PubMed  Google Scholar 

  • Nawrath C (2006) Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol 9:281–287

    Article  CAS  PubMed  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pappan K, Austin-Brown S, Chapman KD, Wang X (1998) Substrate selectivities and lipid modulation of plant phospholipase Dα, β and γ. Arch Biochem Biophys 353:131–140

    Article  CAS  PubMed  Google Scholar 

  • Ribot C, Zimmerli C, Farmer EE, Reymond P, Poirier Y (2008) Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol 147:696–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romeis T, Piedras P, Jones JDG (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12:803–815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235

    Article  CAS  PubMed  Google Scholar 

  • Salomon S, Gácser A, Frerichmann S, Kröger C, Scäfer W, Voigt CA (2012) The secreted lipase FGL1 is sufficient to restore the initial infection step to the apathogenic Fusarium graminearum MAP kinase disruption mutant Δgpmk1. Eur J Plant Pathol 134:23–37

    Article  CAS  Google Scholar 

  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT (2011) Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol 156:1520–1534

    Article  PubMed Central  PubMed  Google Scholar 

  • Shah J (2005) Lipids, lipases and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Shah J, Kachroo PK, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563–574

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci U S A 98:12837–12842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teaster ND, Motes CM, Tang Y, Wiant WC, Cotter MQ, Wang Y-S, Kilaru A, Venables BJ, Hasenstein KH, Gonzalez G, Blancaflor EB, Chapman KD (2007) N-acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell 19:2454–2469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JDG (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomma BPHJ, Nürnberg T, Jossten MHAJ (2011) On PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B (2005) Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tripathy S, Venables BJ, Chapman KD (1999) N-acylethanolamines in signal transduction of elicitor perception. Attenuation of alkalinization response and activation of defense gene expression. Plant Physiol 121:1299–1308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • van der Luit AH, Piatti T, Van Doom A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1515

    Article  PubMed Central  PubMed  Google Scholar 

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Vasconsuelo AA, Morelli S, Picotto G, Giuletti AM, Boland R (2005) Intracellular calcium mobilization: a key step for chitosan-induced anthraquinone production in Rubia tinctorum L. Plant Sci 169:712–720

    Article  CAS  Google Scholar 

  • Voigt CA, Schafer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375

    Article  CAS  PubMed  Google Scholar 

  • Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GC, Ekengren SK, Meijer HJ, Seifi A, Bai Y, ten Have A, Munnik T, Thomma BP, Joosten MH (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–239

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zien CA, Afitlhile M, Welti R, Hildebrand DF, Wang X (2000) Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol. doi:10.1021/cb900269u

    PubMed  Google Scholar 

  • Yamaguchi T, Minami E, Shibuya N (2003) Activation of phospholipases by N-acetlychitooligosaccharide elicitor in suspension-cultured rice cells mediates reactive oxygen generation. Physiol Plant 118:361–370

    Article  CAS  Google Scholar 

  • Yamaguchi T, Minami E, Ueki J, Shibuya N (2005) Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol 46:579–587

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Borrego E, Kolomiets MV (2013) Jasmonate biosynthesis, perception and function in plant development and stress response. In: Baez RV (ed) Lipid metabolism. InTech, Rijeka, pp 393–442, Chapter 16, http://dx.doi.org/10.5772/52675

    Google Scholar 

  • Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X (2007) AtPLAI is an acyl hydrolase involved in basal Jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    Article  CAS  PubMed  Google Scholar 

  • Young SA, Wang X, Leach JE (1996) Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzae pv oryzae. Plant Cell 8:1079–1090

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Guo Y, Kosaihira A, Sakai K (2004) Rapid accumulation and metabolism of polyphosphoinositol and its possible role in phytoalexin biosynthesis in yeast elicitor-treated Cupressus lusitanica cell cultures. Planta 219:121–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to Jyoti Shah from the National Science Foundation (IOS-1121570 and MCB-0920600) and the U.S. Department of Agriculture as a cooperative project with the U.S. Wheat & Barley Scab Initiative (Agreement No. 59-0790-8-060)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shah, J. (2014). Lipases in Signaling Plant Defense Responses. In: Wang, X. (eds) Phospholipases in Plant Signaling. Signaling and Communication in Plants, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42011-5_11

Download citation

Publish with us

Policies and ethics