Skip to main content

A Performance Boost for Hash-Based Signatures

  • Chapter
Number Theory and Cryptography

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8260))

Abstract

Digital signatures have become a key component of many embedded system solutions and are facing strong security and efficiency requirements. In this work, algorithmic improvements for the authentication path computation decrease the average signature computation time by close to 50 % when compared to state-of-the-art algorithms. The proposed scheme is implemented on an Intel Core i7 CPU and an AVR ATxmega microcontroller with optimized versions for the respective target platform. The theoretical algorithmic improvements are verified and cryptographic hardware accelerators are used to achieve competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atmel. ATxmega128A1 Data Sheet, http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf

  2. Atmel. AVR XMEGA A Manual, http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf

  3. Atmel. AVR XPLAIN board, http://www.atmel.com/dyn/resources/prod_documents/doc8203.pdf

  4. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full aes-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the Security of the Winternitz One-Time Signature Scheme. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based Digital Signature Schemes. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 35–93. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Dods, C., Smart, N.P., Stam, M.: Hash Based Digital Signature Schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Eisenbarth, T., von Maurich, I., Ye, X.: Faster Hash-based Signatures with Bounded Leakage. In: Selected Areas in Cryptography, SAC 2013 (August 2013)

    Google Scholar 

  10. Hülsing, A.: W-OTS+ - Shorter Signatures for Hash-Based Signature Schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Hülsing, A., Busold, C., Buchmann, J.: Forward Secure Signatures on Smart Cards. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Intel. Intel Core i7 2620M Specifications, http://ark.intel.com/products/52231/Intel-Core-i7-2620M-Processor-4M-Cache-2_70-GHz

  13. Intel. Whitepaper on the Intel AES Instructions Set, http://software.intel.com/file/24917

  14. Lamport, L.: Constructing Digital Signatures from a One-Way Function. Technical report, CSL-98, SRI International (1979)

    Google Scholar 

  15. Lee, J., Stam, M.: MJH: A Faster Alternative to MDC-2. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Matyas, S.M., Meyer, C.H., Oseas, J.: Generating strong one-way functions with cryptographic algorithm. IBM Technical Disclosure Bulletin 27(10A), 5658–5659 (1985)

    Google Scholar 

  17. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC, Algorithm 9.41 (1997)

    Google Scholar 

  18. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

    Google Scholar 

  19. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast Hash-Based Signatures on Constrained Devices. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 104–117. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage Resilient Cryptography in Practice. In: Sadeghi, A.-R., Naccache, D., Basin, D., Maurer, U. (eds.) Towards Hardware-Intrinsic Security, Information Security and Cryptography, pp. 99–134. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Szydlo, M.: Merkle Tree Traversal in Log Space and Time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eisenbarth, T., von Maurich, I., Paar, C., Ye, X. (2013). A Performance Boost for Hash-Based Signatures. In: Fischlin, M., Katzenbeisser, S. (eds) Number Theory and Cryptography. Lecture Notes in Computer Science, vol 8260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42001-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42001-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42000-9

  • Online ISBN: 978-3-642-42001-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics