Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

Abstract

Darwinian evolution can be illustrated as an uphill walk in a landscape, where the surface consists of genotypes, the height coordinates represent fitness, and each step corresponds to a point mutation. Epistasis, roughly defined as the dependence between the fitness effects of mutations, is a key concept in the theory of adaptation. Important recent approaches depend on graphs and polytopes. Fitness graphs are useful for describing coarse properties of a landscape, such as mutational trajectories and the number of peaks. The graphs have been used for relating global and local properties of fitness landscapes. The geometric theory of gene interaction, or the shape theory, is the most fine-scaled approach to epistasis. Shapes, defined as triangulations of polytopes for any number of loci, replace the well established concepts of positive and negative epistasis for two mutations. From the shape one can identify the fittest populations, i.e., populations where allele shuffling (recombination) will not increase the mean fitness. Shapes and graphs provide complementary information. The approaches make no structural assumptions about the underlying fitness landscapes, which make them well suited for empirical work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aita, T., Iwakura, M., Husimi, Y.: A cross-section of the fitness landscape of dihydrofolate reductase. Protein Eng. 14, 633–638 (2001)

    Article  Google Scholar 

  2. Beerenwinkel, N., Eriksson, N., Sturmfels, B.: Conjunctive Bayesian networks. Bernoulli 13, 893–909 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beerenwinkel, N., Pachter, L., Sturmfels, B.: Epistasis and shapes of fitness landscapes. Statistica Sinica 17, 1317–1342 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Beerenwinkel, N., Pachter, L., Sturmfels, B., Elena, S.F., Lenski, R.E.: Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evolutionary Biology 7, 60–61 (2007)

    Article  Google Scholar 

  5. Carnerio, M., Hartl, D.L.: Colloquium papers: Adaptive landscapes and protein evolution. Proc. Natl. Acad. Sci USA 107(Suppl. 1), 1747–1751 (2010)

    Article  Google Scholar 

  6. Crona, K., Greene, D., Barlow, M.: The peaks and geometry of fitness landscapes. J. Theor. Biol. 317, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  7. Crona, K., Patterson, D., Stack, K., Greene, D., Goulart, C.P., Mentar, M., Jacobs, S.J., Kallmann, M., Barlow, M.: Antibiotic resistance landscapes: a quantification of theory-data incompatibility for fitness landscapes (2013), http://arxiv.org/abs/1303.3842

  8. Crow, J.F.: H. J. Muller and the “competition hoax”. Genetics 173, 511–514 (2006)

    Google Scholar 

  9. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Applications, Structures and Algorithms. Algorithms and Computation in Mathematics, vol. 25. Springer, Heidelberg (2010)

    Book  Google Scholar 

  10. De Visser, J.A.G.M., Park, S.C., Krug, J.: Exploring the effect of sex on empirical fitness landscapes. The American Naturalist 174(suppl. 1), S15–S30 (2009)

    Google Scholar 

  11. Desper, R., Jiang, F., Kallioniemi, O.P., Moch, H., Papadimitriou, C.H., Schäffer, A.A.: Inferring tree models for oncogenesis from comparative genome hybridization data. Comput. Biol. 6, 37–51 (1999)

    Article  Google Scholar 

  12. Flyvbjerg, H., Lautrup, B.: Evolution in a rugged fitness landscape. Phys. Rev. A 46, 6714–6723 (1992)

    Article  Google Scholar 

  13. Franke, J., Klözer, A., de Visser, J.A.G.M., Krug, J.: Evolutionary accessibility of mutational pathways. PLoS Comput. Biol. 7(8), e1002134 (2011), doi:10.1371/journal.pcbi.1002134

    Google Scholar 

  14. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  15. Gillespie, J.H.: A simple stochastic gene substitution model. Theor. Pop. Biol. 23, 202–215 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gillespie, J.H.: The molecular clock be an episodic clock. Proc. Natl. Acad. Sci. USA 81, 8009–8013 (1984)

    Article  MATH  Google Scholar 

  17. Goulart, C.P., Mentar, M., Crona, K., Jacobs, S.J., Kallmann, M., Hall, B.G., Greene, D., Barlow, M.: Designing antibiotic cycling strategies by determining and understanding local adaptive landscapes. PLoS One 8(2), e56040 (2013), doi:10.1371/journal.pone.0056040

    Google Scholar 

  18. Haldane, J.B.S.: A mathematical theory of natural and artificial selection. Part VIII. Metastable populations. Proc. Cambridge Philos. Soc. 27, 137–142 (1931)

    Article  MATH  Google Scholar 

  19. Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  20. Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscape and its application to maturation of the immune response. J. Theor. Biol. 141, 211–245 (1989)

    Article  Google Scholar 

  21. Kingman, J.F.C.: A simple model for the balance between selection and mutation. J. Appl. Prob. 15, 1–12 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kryazhimskiy, S., Draghi, J.A., Plotkin, J.B.: In evolution, the sum is less than its part. Science 332, 1160–1161 (2011)

    Article  Google Scholar 

  23. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C.: The evolutionary origin of complex features. Nature 423, 139–144 (2003)

    Article  Google Scholar 

  24. Macken, C.A., Perelson, A.S.: Protein evolution on partially correlated landscapes. Proc. Natl. Acad. Sci. USA 92, 9657–9661 (1995)

    Article  MATH  Google Scholar 

  25. Mani, R., Onge, R.P.S., Hartman, J.L., Giaever, G., Roth, F.P.: Defining genetic interaction. Proc. Natl. Acad. Sci. USA 105, 3461–3466 (2008)

    Article  Google Scholar 

  26. Martin, G., Otto, S.P., Lenormand, T.: Selection for recombination in structured populations. Genetics 172, 593–609 (2006)

    Article  Google Scholar 

  27. Maynard Smith, J.: Natural selection and the concept of protein space. Nature 225, 563–564 (1970)

    Article  Google Scholar 

  28. Orr, H.A.: The population genetics of adaptation on correlated fitness landscapes: the block model. Evolution 60, 1113–1124 (2006)

    Google Scholar 

  29. Otto, S.P., Lenormand, T.: Resolving the paradox of sex and recombination. Nature Reviews Genetics 3, 252–261 (2002)

    Article  Google Scholar 

  30. Park, S.C., Krug, J.: Evolution in random fitness landscapes: The infinite sites model. J. Stat. Mech., P4014 (2008)

    Google Scholar 

  31. Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M., Tans, S.J.: Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007)

    Article  Google Scholar 

  32. Poelwijk, F.J., Sorin, T.N., Kiviet, D.J., Tans, S.J.: Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 272, 141–144 (2011)

    Article  Google Scholar 

  33. Rokyta, D.R., Beisel, C.J., Joyce, P.: Properties of adaptive walks on uncorrelated landscapes under strong selection and weak mutation. J. Theor. Biol. 243, 114–120 (2006)

    Article  MathSciNet  Google Scholar 

  34. Segal, M.R., Barbour, J.D., Grant, R.M.: Relating HIV-1 sequence variation to replication capacity via trees and forests. Stat. Appl. Genet. Mol. Biol. 3, 2-1-20 (2004)

    Google Scholar 

  35. Szendro, I.G., Schenk, M.F., Franke, J., Krug, J., de Visser, J.A.G.M.: Quantitative analyses of empirical fitness landscapes. J. Stat. Mech., P1005 (2013)

    Google Scholar 

  36. Weinreich, D.M., Watson, R.A., Chao, L.: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005)

    Google Scholar 

  37. Weinreich, D.M., Delaney, N.F., Depristo, M.A., Hartl, D.L.: Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006)

    Article  Google Scholar 

  38. Wright, S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931)

    Google Scholar 

  39. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, Berlin (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Crona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crona, K. (2014). Polytopes, Graphs and Fitness Landscapes. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics