Skip to main content

Structural Characterization of Inorganic Biomaterials

  • Chapter
  • First Online:
Book cover Biomedical Inorganic Polymers

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 54))

Abstract

Composite materials with unique architectures are ubiquitous in nature, e.g., marine shells, sponge spicules, bones, and dentine. These structured organic–inorganic systems are generated through self-assembly of organic matter (usually proteins or lipids) into scaffolds, onto which the inorganic component is deposited in organized hierarchical structures of sizes spanning several orders of magnitude. The development of bio-inspired materials is possible through the design of synthetic bottom-up self-assembly methods. Knowledge of the structure is required in order to assess the efficiency of their design and evaluate their properties. This chapter reviews the main methods used for structure determination of natural and synthetic inorganic biomaterials, namely, X-ray diffraction and scattering and electron diffraction and microscopy (TEM, SEM), as well as the AFM and CSLM microscopy methods. Moreover, spectroscopic (IR, NMR, and Raman) and thermal methods are presented. Examples of biomimetic synthetic materials are used to show the contribution of single or multiple techniques in the elucidation of their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksay IA, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM (1996) Biomimetic pathways for assembling inorganic thin films. Science 273:892–898

    Article  CAS  PubMed  Google Scholar 

  • Andre R, Tahir MN, Link T, Jochum FD, Kolb U, Theato P, Berger R, Wiens M, Schroeder H-C, Muller WEG et al (2011) Chemical mimicry: hierarchical 1D TiO2@zro2 core-shell structures reminiscent of sponge spicules by the synergistic effect of silicatein-r and silintaphin-1. Langmuir 27:5464–5471

    Article  CAS  PubMed  Google Scholar 

  • Athens GL, Kim D, Epping JD, Cadars S, Ein-Eli Y, Bradley FC (2011) Molecular optimization of multiply-functionalized mesoporous films with ion conduction properties. J Am Chem Soc 133:16023–16036

    Article  CAS  PubMed  Google Scholar 

  • Bigi A, Panzavolta S, Roveri N (1998) Hydroxyapatite-gelatin Þlms: a structural and mechanical characterization. Biomaterials 19:739–744

    Article  CAS  PubMed  Google Scholar 

  • Blow DM (2002) Outline of crystallography for biologists. Oxford University Press, Oxford

    Google Scholar 

  • Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite—gelatin nanocomposites. Biomaterials 24:2853–2862

    Article  CAS  PubMed  Google Scholar 

  • Cowley JM (ed) (1992) Electron diffraction techniques. International Union of Crystallography, Oxford University Press, Oxford

    Google Scholar 

  • Croce G, Frache A, Milanesio M, Viterbo D, Bavestrello G, Benatti U, Giovine M, Amenitsch H (2003) Fiber diffraction study of spicules from marine sponges. Microsc Res Tech 62:378–381

    Article  PubMed  Google Scholar 

  • Croce G, Frache A, Milanesio M, Marchese L, Causá M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C et al (2004) Structural characterization of siliceous spicules from marine sponges. Biophys J 86:526–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer E (1894) Einfluss der configuration auf die Wirkung der enzyme. Ber Deutsch Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  • Grosso D, Babonneau F, Albouy P-A, Amenitsch H, Balkenende AR, Brunet-Bruneau A, Rivory J (2002) An in situ study of mesostructured CTAB-silica film formation during dip coating using time-resolved SAXS and interferometry measurements. Chem Mater 14:931–939

    Article  CAS  Google Scholar 

  • Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  • Hou A, Chen H (2010) Preparation and characterization of silk/silica hybrid biomaterials by sol–gel crosslinking process. Mat Sci Eng B 167:124–128

    Article  CAS  Google Scholar 

  • Karavas E, Georgarakis M, Docoslis A, Bikiaris D (2007) Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int J Pharm 340:76–83

    Article  CAS  PubMed  Google Scholar 

  • Kapoor S, Batra U (2010) Preparation and bioactivity evaluation of bone like hydroxyapatite - bioglass composite. Int J Chem Biol Engin 3:13, 24–28

    Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystallite and amorphous materials, 2nd edn. Wiley, New York

    Google Scholar 

  • Laws DD, Bitter H-ML, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed 41:3096–3129

    Article  CAS  Google Scholar 

  • Lehn J-M (1995) Supramolecular chemistry. VCH, Weinheim

    Book  Google Scholar 

  • Margiolaki I, Wright JP, Wilmanns M, Fitch AN, Pinotsis N (2007) Second SH3 domain of ponsin solved from powder diffraction. J Am Chem Soc 129:11865–11871

    Article  CAS  PubMed  Google Scholar 

  • Margiolaki I, Wright JP (2008) Powder crystallography on macromolecules. Acta Cryst A64:169–180

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  CAS  Google Scholar 

  • Rusu VM, Ng C-H, Wilkec M, Tierscha B, Fratzld P, Peter MG (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26:5414–5426

    Article  CAS  PubMed  Google Scholar 

  • Semwogerere D, Weeks ER (2005) Confocal microscopy. In encyclopedia of biomaterials and biomedical engineering. Taylor & Francis, London

    Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein a cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI (2007) Small-angle scattering studies of macromolecular solutions. J Appl Crystallogr 40:s10–s17

    Article  CAS  Google Scholar 

  • Tanner BK, Hase TPA, Lafford TA, Goorsky MS (2004) Grazing incidence in-plane X-ray diffraction in the laboratory. Adv X-Ray Anal 47:309–314

    CAS  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  CAS  Google Scholar 

  • Wang G, Peng Q, LI Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44:322–332

    Article  PubMed  Google Scholar 

  • Weaver JC, Pietrasanta LI, Hedin N, Chmelka BF, Hansma PK, Morse DE (2003) Nanostructural features of demosponge biosilica. J Struct Biol 144:271–281

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Zhang K, Blanford CF, Francis LF, Stein A (2001) In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure. Chem Mater 13:1374–1382

    Article  CAS  Google Scholar 

  • Zhang X, Takahashi T, Vecchio KS (2009) Development of bioresorbable Mg-substituted tricalcium phosphate scaffolds for bone tissue engineering. Mat Sci Eng C 29:2003–2010

    Article  CAS  Google Scholar 

  • Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 Angsrom pores. Science 279:548–552

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. Mavridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mavridis, I.M. (2013). Structural Characterization of Inorganic Biomaterials. In: Müller, W., Wang, X., Schröder, H. (eds) Biomedical Inorganic Polymers. Progress in Molecular and Subcellular Biology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41004-8_2

Download citation

Publish with us

Policies and ethics