Skip to main content

Borderline Kernel Based Over-Sampling

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8073))

Abstract

Nowadays, the imbalanced nature of some real-world data is receiving a lot of attention from the pattern recognition and machine learning communities in both theoretical and practical aspects, giving rise to different promising approaches to handling it. However, preprocessing methods operate in the original input space, presenting distortions when combined with kernel classifiers, that operate in the feature space induced by a kernel function. This paper explores the notion of empirical feature space (a Euclidean space which is isomorphic to the feature space and therefore preserves its structure) to derive a kernel-based synthetic over-sampling technique based on borderline instances which are considered as crucial for establishing the decision boundary. Therefore, the proposed methodology would maintain the main properties of the kernel mapping while reinforcing the decision boundaries induced by a kernel machine. The results show that the proposed method achieves better results than the same borderline over- sampling method applied in the original input space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  2. Tang, Y., Zhang, Y.Q., Chawla, N.V., Krasser, S.: SVMs modeling for highly imbalanced classification. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 39(1), 281–288 (2009)

    Article  Google Scholar 

  3. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42(4), 463–484 (2012)

    Article  Google Scholar 

  4. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2001)

    Google Scholar 

  5. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Rätsch, G., Smola, A.J.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10, 1000–1017 (1999)

    Article  Google Scholar 

  6. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Optimizing the kernel in the empirical feature space. IEEE Transactions on Neural Networks 16(2), 460–474 (2005)

    Article  Google Scholar 

  7. Yan, F., Mikolajczyk, K., Kittler, J., Tahir, M.A.: Combining multiple kernels by augmenting the kernel matrix. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 175–184. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Learning with the optimized data-dependent kernel. In: Proc. of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW, vol. 6, pp. 95–101. IEEE Computer Society (2004)

    Google Scholar 

  9. Abe, S., Onishi, K.: Sparse least squares support vector regressors trained in the reduced empirical feature space. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 527–536. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Xiong, H.: A unified framework for kernelization: The empirical kernel feature space. In: Chinese Conference on Pattern Recognition, CCPR, pp. 1–5 (November 2009)

    Google Scholar 

  11. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Wang, H.Y.: Combination approach of smote and biased-svm for imbalanced datasets (2008)

    Google Scholar 

  13. Zeng, Z.-Q., Gao, J.: Improving SVM classification with imbalance data set. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009, Part I. LNCS, vol. 5863, pp. 389–398. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 460–474 (1998)

    Article  Google Scholar 

  15. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  16. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  17. Fernández-Caballero, J.C., Martínez-Estudillo, F.J., Hervás-Martínez, C., Gutiérrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Transactions on Neural Networks 21(5), 750–770 (2010)

    Article  Google Scholar 

  18. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Braun, M.L., Buhmann, J.M., Müller, K.R.: On relevant dimensions in kernel feature spaces. J. Mach. Learn. Res. 9, 1875–1908 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Ortiz, M., Gutiérrez, P.A., Hervás-Martínez, C. (2013). Borderline Kernel Based Over-Sampling. In: Pan, JS., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2013. Lecture Notes in Computer Science(), vol 8073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40846-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40846-5_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40845-8

  • Online ISBN: 978-3-642-40846-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics