etiquetAR: Tagging Learning Experiences

  • Mar Pérez–Sanagustín
  • Alejandro Martínez
  • Carlos Delgado-Kloos
Conference paper

DOI: 10.1007/978-3-642-40814-4_61

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8095)
Cite this paper as:
Pérez–Sanagustín M., Martínez A., Delgado-Kloos C. (2013) etiquetAR: Tagging Learning Experiences. In: Hernández-Leo D., Ley T., Klamma R., Harrer A. (eds) Scaling up Learning for Sustained Impact. EC-TEL 2013. Lecture Notes in Computer Science, vol 8095. Springer, Berlin, Heidelberg

Abstract

etiquetAR is an authoring tool for supporting the design and enactment of mobile context-based learning experiences based on QR tags. etiquetAR enables creating, managing, and sharing personalized QR tags attachable to any object or physical geographical location. Tags are digital layers of contextualized information that transforms any physical space into a digitally augmented learning environment. This demonstration paper presents etiquetAR first working prototype of this application. In particular, the paper details: (1) how etiquetAR web-based application can be used to edit a tag, associate different resources to it, and relate resources information to a particular profile for adaptive learning experiences; and (2) how users can access and contribute to the information hidden in the tags using the mobile-based application. This demonstration will show the audience how etiquetAR is a simple tool designed to encourage practitioners to create their own tag-based learning experiences.

Keywords

mobile learning QR tags augmented reality mobile-web-based application demonstration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mar Pérez–Sanagustín
    • 1
  • Alejandro Martínez
    • 1
  • Carlos Delgado-Kloos
    • 1
  1. 1.Departamento de Ingeniería TelemáticaUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations