Skip to main content

Structuring Safety Requirements in ISO 26262 Using Contract Theory

  • Conference paper
Computer Safety, Reliability, and Security (SAFECOMP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8153))

Included in the following conference series:

Abstract

ISO 26262 - ”Road vehicles-Functional Safety” is a standard for the automotive industry, administered in an attempt to prevent potential accidents due to systematic and random failures in the Electrical/Electronic-system. ISO 26262 is based on the principle of relying on safety requirements as the main source of information to enforce correctness of design. We show that the contract theory from the SPEEDS FP6 project provides a suitable foundation to structure safety requirements in ISO 26262. Contracts provide the necessary support to separate the responsibilities between a system and its environment by explicitly imposing requirements on the environment as assumptions, in order to guarantee the safety requirements. We show this by characterizing two levels of safety requirements with contracts for an industrial system where we also show how contract theory supports the verification of consistency and completeness of safety requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ISO: 26262 - Road vehicles-Functional safety (2011)

    Google Scholar 

  2. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 200–225. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Blanquart, J.-P., et al.: Towards Cross-Domains Model-Based Safety Process, Methods and Tools for Critical Embedded Systems: The CESAR Approach. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 57–70. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Baumgart, A., Reinkemeier, P., Rettberg, A., Stierand, I., Thaden, E., Weber, R.: A Model–Based Design Methodology with Contracts to Enhance the Development Process of Safety–Critical Systems. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T. (eds.) SEUS 2010. LNCS, vol. 6399, pp. 59–70. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Damm, W., Josko, B., Peinkamp, T.: Contract Based ISO CD 26262 Safety Analysis. In: Safety-Critical Systems, SAE (2009)

    Google Scholar 

  6. Sangiovanni-Vincentelli, A.L., Damm, W., Passerone, R.: Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. Eur. J. Control 18(3), 217–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benveniste, A., Caillaud, B., Passerone, R.: Multi-Viewpoint State Machines for Rich Component Models (2008)

    Google Scholar 

  8. Graf, S., Quinton, S.: Contracts for BIP: Hierarchical Interaction Models for Compositional verification (2007)

    Google Scholar 

  9. Benveniste, A., et al.: Contracts for the Design of Embedded Systems. Part II: Theory (March 2013), http://www.irisa.fr/distribcom/benveniste/pub/

  10. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25, 40–51 (1992)

    Article  Google Scholar 

  11. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Commun. ACM 12(10), 576–580 (1969)

    Article  MATH  Google Scholar 

  12. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18(8), 453–457 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giese, H.: Contract-based Component System Design. In: Thirty-Third Annual Hawaii Int. Conf. on System Sciences (HICSS-33). IEEE Press, Maui (2000)

    Google Scholar 

  14. Sun, X., et al.: Contract-based System-Level Composition of Analog Circuits. In: 46th ACM/IEEE Design Automation Conf., DAC 2009, pp. 605–610 (July 2009)

    Google Scholar 

  15. Damm, W.: Controlling Speculative Design Processes Using Rich Component Models. In: Fifth International Conference on Application of Concurrency to System Design, ACSD 2005, pp. 118–119 (June 2005)

    Google Scholar 

  16. Back, R.-J., Wright, J.V.: Contracts, Games and Refinement. In: Information and Computation, p. 200–0. Elsevier (1997)

    Google Scholar 

  17. Alfaro, L.D., Henzinger, T.A.: Interface Theories for Component-based Design, pp. 148–165. Springer (2001)

    Google Scholar 

  18. Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. In: Proceedings of the Fifth MIT Conference on Advanced Research in VLSI, pp. 51–65. MIT Press, Cambridge (1988)

    Google Scholar 

  19. Negulescu, R.: Process spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 199–213. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13(6), 377–387 (1970)

    Article  MATH  Google Scholar 

  21. Westman, J., Nyberg, M., Törngren, M.: Structuring Safety Requirements in ISO 26262 using Contract Theory. Technical Report TRITA MMK 2013:04, KTH (March 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Westman, J., Nyberg, M., Törngren, M. (2013). Structuring Safety Requirements in ISO 26262 Using Contract Theory. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2013. Lecture Notes in Computer Science, vol 8153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40793-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40793-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40792-5

  • Online ISBN: 978-3-642-40793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics