Skip to main content

PET/MRI in Evaluating Lymphomas: Preliminary Experience and Potential Future Applications

  • Chapter
  • First Online:
PET/MRI

Abstract

Hodgkin’s and non-Hodgkin’s lymphomas (HL and NHL) are a heterogeneous group of lymphoproliferative disorders, representing the fifth most frequent type of cancer in the western world [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jhanwar YS, Straus DJ. The role of PET in lymphoma. J Nucl Med. 2006;47(8):1326–34.

    PubMed  Google Scholar 

  2. Armitage JO. Staging non-Hodgkin lymphoma. CA Cancer J Clin. 2005;55(6):368–76.

    Article  PubMed  Google Scholar 

  3. Connors JM. State-of-the-art therapeutics: Hodgkin’s lymphoma. J Clin Oncol. 2005;23(26):6400–8.

    Article  PubMed  CAS  Google Scholar 

  4. Juweid ME. FDG-PET/CT in lymphoma. Methods Mol Biol. 2011;727:1–19.

    Article  PubMed  Google Scholar 

  5. Kwee TC, Kwee RM, Nievelstein RA. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008;111(2):504–16.

    Article  PubMed  CAS  Google Scholar 

  6. Bodet-Milin C, et al. FDG-PET in follicular lymphoma management. J Oncol. 2012;370272(10):30.

    Google Scholar 

  7. Park S, et al. The impact of baseline and interim PET/CT parameters on clinical outcome in patients with diffuse large B cell lymphoma. Am J Hematol. 2012;87(9):937–40.

    Article  PubMed  Google Scholar 

  8. Shelly MJ, et al. 18-Fluorodeoxyglucose positron emission tomography/computed tomography in the management of aggressive non-Hodgkin’s B-cell lymphoma. ISRN Hematol. 2012;456706(10):11.

    Google Scholar 

  9. Connors JM. Positron emission tomography in the management of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2011;2011:317.

    Article  PubMed  Google Scholar 

  10. Hosein PJ, et al. Utility of positron emission tomography scans in mantle cell lymphoma. Am J Hematol. 2011;86(10):841–5.

    Article  PubMed  Google Scholar 

  11. Zinzani PL. PET in T-cell lymphoma. Curr Hematol Malig Rep. 2011;6(4):241–4.

    Article  PubMed  Google Scholar 

  12. Cimarelli S, et al. Use of F-18 FDG PET/CT in non-Hodgkin lymphoma with central nervous system involvement. Clin Nucl Med. 2011;36(6):e45–9.

    Article  PubMed  Google Scholar 

  13. Mohile NA, Deangelis LM, Abrey LE. The utility of body FDG PET in staging primary central nervous system lymphoma. Neuro Oncol. 2008;10(2):223–8.

    Article  PubMed  Google Scholar 

  14. Seam P, Juweid ME, Cheson BD. The role of FDG-PET scans in patients with lymphoma. Blood. 2007;110(10):3507–16.

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan WD, et al. Gallium-67 imaging: a predictor of residual tumor viability and clinical outcome in patients with diffuse large-cell lymphoma. J Clin Oncol. 1990;8(12):1966–70.

    PubMed  CAS  Google Scholar 

  16. Tsukamoto N, et al. The usefulness of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and a comparison of (18)F-FDG-pet with (67)gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110(3):652–9.

    Article  PubMed  Google Scholar 

  17. Karam M, et al. Role of fluorine-18 fluoro-deoxyglucose positron emission tomography scan in the evaluation and follow-up of patients with low-grade lymphomas. Cancer. 2006;107(1):175–83.

    Article  PubMed  Google Scholar 

  18. Kostakoglu L, et al. Interim [(18)F]fluorodeoxyglucose positron emission tomography imaging in stage I-II non-bulky Hodgkin lymphoma: would using combined positron emission tomography and computed tomography criteria better predict response than each test alone? Leuk Lymphoma. 2012;53(11):2143–50.

    Article  PubMed  CAS  Google Scholar 

  19. Isasi CR, Lu P, Blaufox MD. A metaanalysis of 18F-2-deoxy-2-fluoro-d-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer. 2005;104(5):1066–74.

    Article  PubMed  Google Scholar 

  20. Munker R, et al. Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann Oncol. 2004;15(11):1699–704.

    Article  PubMed  CAS  Google Scholar 

  21. Nievelstein RA, et al. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol. 2012;22(9):1946–54.

    Article  PubMed  CAS  Google Scholar 

  22. Brix G, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46(4):608–13.

    PubMed  CAS  Google Scholar 

  23. Fahey FH. Dosimetry of pediatric PET/CT. J Nucl Med. 2009;50(9):1483–91.

    Article  PubMed  CAS  Google Scholar 

  24. Lauenstein TC, Semelka RC. Emerging techniques: whole-body screening and staging with MRI. J Magn Reson Imaging. 2006;24(3):489–98.

    Article  PubMed  Google Scholar 

  25. Schmidt GP, et al. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol. 2007;42(6):449–59.

    Article  PubMed  Google Scholar 

  26. Lauenstein TC, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology. 2004;233(1):139–48.

    Article  PubMed  Google Scholar 

  27. Antoch G, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA. 2003;290(24):3199–206.

    Article  PubMed  CAS  Google Scholar 

  28. Brennan DD, et al. A comparison of whole-body MRI and CT for the staging of lymphoma. AJR Am J Roentgenol. 2005;185(3):711–16.

    Article  PubMed  CAS  Google Scholar 

  29. Kellenberger CJ, et al. Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol. 2004;14(10):1829–41.

    PubMed  Google Scholar 

  30. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35.

    Article  PubMed  Google Scholar 

  31. Szafer A, et al. Diffusion-weighted imaging in tissues: theoretical models. NMR Biomed. 1995;8(7–8):289–96.

    Article  PubMed  CAS  Google Scholar 

  32. Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med. 2000;43(6):828–36.

    Article  PubMed  CAS  Google Scholar 

  33. Barajas Jr RF, et al. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2010;31(1):60–6.

    Article  PubMed  Google Scholar 

  34. Gu J, et al. Whole-body diffusion-weighted imaging: the added value to whole-body MRI at initial diagnosis of lymphoma. AJR Am J Roentgenol. 2011;197(3):W384–91.

    Article  PubMed  Google Scholar 

  35. Abdulqadhr G, et al. Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol. 2011;52(2):173–80.

    Article  PubMed  Google Scholar 

  36. van Ufford HM, et al. Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with 18F-FDG PET/CT. AJR Am J Roentgenol. 2011;196(3):662–9.

    Article  PubMed  Google Scholar 

  37. Punwani S, et al. Diffusion-weighted MRI of lymphoma: prognostic utility and implications for PET/MRI? Eur J Nucl Med Mol Imaging. 2012;30:30.

    Google Scholar 

  38. Kwee TC, et al. Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol. 2009;44(10):683–90.

    Article  PubMed  Google Scholar 

  39. Baraniskin A, et al. Current strategies in the diagnosis of diffuse large B-cell lymphoma of the central nervous system. Br J Haematol. 2012;156(4):421–32.

    Article  PubMed  Google Scholar 

  40. Haldorsen IS, et al. Diagnostic delay in primary central nervous system lymphoma. Acta Oncol. 2005;44(7):728–34.

    Article  PubMed  Google Scholar 

  41. Bierman P, Giglio P. Diagnosis and treatment of central nervous system involvement in non-Hodgkin’s lymphoma. Hematol Oncol Clin North Am. 2005;19(4):597–609.

    Article  PubMed  Google Scholar 

  42. Haldorsen IS, et al. CT and MR imaging features of primary central nervous system lymphoma in Norway, 1989-2003. AJNR Am J Neuroradiol. 2009;30(4):744–51.

    Article  PubMed  CAS  Google Scholar 

  43. Haldorsen IS, Espeland A, Larsson EM. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol. 2011;32(6):984–92.

    Article  PubMed  CAS  Google Scholar 

  44. Go JL, Lee SC, Kim PE. Imaging of primary central nervous system lymphoma. Neurosurg Focus. 2006;21(5):E4.

    PubMed  Google Scholar 

  45. Kosaka N, et al. 18F-FDG PET of common enhancing malignant brain tumors. AJR Am J Roentgenol. 2008;190(6):W365–9.

    Article  PubMed  Google Scholar 

  46. Westwood TD, Hogan C, Julyan PJ, Coutts G, Bonington S, Carrington B, Taylor B, Khoo S, Bonington A. Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients. Eur J Radiol. 2013;82(8):e374–9. doi:10.1016/j.ejrad.2013.03.008. pii: S0720-048X(13)00137-X.

    Article  PubMed  Google Scholar 

  47. Kasenda B, Haug V, Schorb E, Fritsch K, Finke J, Mix M, Hader C, Weber WA, Illerhaus G, Meyer PT. 18F-FDG PET is an independent outcome predictor in primary central nervous system lymphoma. J Nucl Med. 2013;54(2):184–91. doi:10.2967/jnumed.112.108654. Epub 2012 Dec 18.

    Article  PubMed  CAS  Google Scholar 

  48. Jang SJ, Lee KH, Lee JY, Choi JY, Kim BT, Kim SJ, Kim WS. (11)C-methionine PET/CT and MRI of primary central nervous system diffuse large B-cell lymphoma before and after high-dose methotrexate. Clin Nucl Med. 2012;37(10):e241–4.

    Article  PubMed  Google Scholar 

  49. Shi X, Zhang X, Yi C, Wang X, Chen Z, Zhang B. The combination of 13N-ammonia and 18F-FDG in predicting primary central nervous system lymphomas in immunocompetent patients. Clin Nucl Med. 2013;38(2):98–102. doi:10.1097/RLU.0b013e318279b6cc.

    Article  PubMed  Google Scholar 

  50. Pelosi E, et al. FDG-PET in the detection of bone marrow disease in Hodgkin’s disease and aggressive non-Hodgkin’s lymphoma and its impact on clinical management. Q J Nucl Med Mol Imaging. 2008;52(1):9–16.

    PubMed  CAS  Google Scholar 

  51. Moog F, et al. 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol. 1998;16(2):603–9.

    PubMed  CAS  Google Scholar 

  52. Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med. 2005;46(6):958–63.

    PubMed  Google Scholar 

  53. Cronin CG, et al. Clinical utility of PET/CT in lymphoma. AJR Am J Roentgenol. 2010;194(1):W91–103.

    Article  PubMed  Google Scholar 

  54. Mirowitz SA, et al. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol. 1994;162(1):215–21.

    Article  PubMed  CAS  Google Scholar 

  55. Yasumoto M, et al. MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol. 2002;31(5):263–9.

    Article  PubMed  CAS  Google Scholar 

  56. Kwee TC, de Klerk JM, Nievelstein RA. Imaging of bone marrow involvement in lymphoma: state of the art and future directions. Scientific World Journal. 2011;11:391–402.

    Article  PubMed  Google Scholar 

  57. Drzezga A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55.

    Article  PubMed  Google Scholar 

  58. Platzek I, et al. PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA. 2012;16:16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chiara Gaeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaeta, M.C., Herrmann, K.A. (2014). PET/MRI in Evaluating Lymphomas: Preliminary Experience and Potential Future Applications. In: Carrio, I., Ros, P. (eds) PET/MRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40692-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40692-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40691-1

  • Online ISBN: 978-3-642-40692-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics